
Earth System Modeling Framework

ESMF User Guide

Version 8.9.1

ESMF Joint Specification Team: V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy
Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosalinda de Fainchtein,
Rocky Dunlap, Brian Eaton, Steve Goldhaber, Bob Hallberg, Tom Henderson, Chris Hill, Mark

Iredell, Joseph Jacob, Rob Jacob, Phil Jones, Brian Kauffman, Erik Kluzek, Ben Koziol, Jay
Larson, Peggy Li, Fei Liu, John Michalakes, Raffaele Montuoro, Sylvia Murphy, David Neckels,

Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Daniel Rosen, Jim Rosinski, Mathew
Rothstein, Bill Sacks, Kathy Saint, Will Sawyer, Earl Schwab, Shepard Smithline, Walter Spector,

Don Stark, Max Suarez, Spencer Swift, Gerhard Theurich, Atanas Trayanov, Silverio Vasquez, Jon
Wolfe, Weiyu Yang, Mike Young, Leonid Zaslavsky

January 6, 2026

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broad community. Below are the software packages that are

included in ESMF or strongly influenced our design. We’d like to express our gratitude to the developers of these

codes for access to their software as well as their ideas and advice.

• Parallel I/O (PIO) developers at NCAR and DOE Laboratories for their excellent work on this package and their

help in making it work with ESMF

• The Spherical Coordinate Remapping and Interpolation Package (SCRIP) from Los Alamos, which informed

the design of our regridding functionality

• The Model Coupling Toolkit (MCT) from Argonne National Laboratory, on which we based our sparse matrix

multiply approach to general regridding

• The Inpack configuration attributes package from NASA Goddard, which was adapted for use in ESMF by

members of NASA Global Modeling and Assimilation group

• The Flexible Modeling System (FMS) package from GFDL and the Goddard Earth Modeling System (GEMS)

from NASA Goddard, both of which provided inspiration for the overall ESMF architecture

• The Common Component Architecture (CCA) effort within the Department of Energy, from which we drew

many ideas about how to design components

• The Vector Signal Image Processing Library (VSIPL) and its predecessors, which informed many aspects of our

design, and the radar system software design group at Lincoln Laboratory

• The Portable, Extensible Toolkit for Scientific Computation (PETSc) package from Argonne National Labora-

tories, on which we based our initial makefile system

• The Community Climate System Model (CCSM) and Weather Research and Forecasting (WRF) modeling

groups at NCAR, who have provided valuable feedback on the design and implementation of the framework

1

Contents

1 What is the Earth System Modeling Framework? 5

2 The ESMF User’s Guide 5

3 How to Contact User Support and Find Additional Information 6

4 How to Submit Comments, Bug Reports, and Feature Requests 6

5 Quick Start 7

5.1 Downloading ESMF . 7

5.2 Directory Structure . 7

5.3 Building ESMF . 7

5.3.1 Environment variables . 8

5.3.2 GNU make . 9

5.3.3 make info . 9

5.3.4 Building makefile targets . 13

5.3.5 Testing makefile targets . 13

5.3.6 Building and using bundled ESMF Command Line Tools . 14

5.4 Building ESMF with Spack . 15

5.4.1 Creating New Spack environment . 15

5.4.2 Finding Available Compilers and External Packages . 15

5.4.3 Installing ESMF Spack Package and Its Dependencies . 15

6 Compiling and Linking User Code against an ESMF Installation 17

6.1 esmf.mk method . 17

6.2 CMake method . 19

7 Debugging of ESMF User Applications 20

8 Using Bundled ESMF Command Line Tools 23

9 Building and Installing ESMF 24

9.1 ESMF Download Options . 24

9.2 Acquiring Development Snapshots . 24

9.3 System Specific Information . 25

9.3.1 General Requirements . 25

9.3.2 Intel Compiler (Classic and oneAPI) . 26

9.3.3 MacOS Darwin . 27

9.4 Third Party Libraries . 27

9.4.1 LAPACK . 27

9.4.2 NetCDF . 28

9.4.3 Parallel-NetCDF . 29

9.4.4 PIO . 30

9.4.5 Accelerator Software Stacks . 30

9.4.6 XERCES . 31

9.4.7 yaml-cpp . 32

9.4.8 MOAB . 32

9.4.9 NUMA . 33

9.4.10 NVML . 33

9.5 ESMF Environment Variables . 34

2

9.6 Supported Platforms . 41

9.7 Building the ESMF Library . 43

9.8 Building the ESMF Documentation . 43

9.9 Installing the ESMF . 44

10 Porting ESMF 45

10.1 The ESMF Build System . 45

10.1.1 General structure . 45

10.1.2 Build configuration . 46

10.1.3 Source code configuration . 47

10.2 Porting ESMF to New Platforms . 47

10.2.1 Customizing the build_rules.mk fragment . 47

10.2.2 Customizing ESMC_Conf.h and ESMF_Conf.inc . 52

10.3 Shared Object Libraries . 52

11 Validating an ESMF Build 52

11.1 Running ESMF Self-Tests . 53

11.1.1 Setting up ESMF to run test suite applications . 53

11.1.2 Running ESMF unit tests . 54

11.1.3 Running ESMF system tests . 57

11.2 Running ESMF Examples . 59

11.2.1 Example source code . 59

11.2.2 Building and running examples . 59

11.3 Validating an existing ESMF installation . 61

12 Architectural Overview 62

12.1 Key Concepts . 62

12.1.1 Modularity . 62

12.1.2 Flexibility . 62

12.1.3 Hierarchical organization . 63

12.1.4 Communication within Components . 63

12.1.5 Uniform communication API . 63

12.2 Superstructure . 63

12.2.1 Import and export State classes . 63

12.2.2 Interface standards . 65

12.2.3 Gridded Component class . 65

12.2.4 Coupler Component class . 65

12.2.5 Flexible data and control flow . 65

12.3 Infrastructure . 67

12.3.1 FieldBundle, Field and Array classes . 67

12.3.2 Grid class . 68

12.3.3 Time and Calendar management . 68

12.3.4 Config resource file manager . 68

12.3.5 DELayout and virtual machine . 68

12.3.6 Logging and error handling . 68

12.3.7 File input and output . 68

13 How to Adapt Applications for ESMF 68

13.1 Individual Components . 69

13.2 Full Application . 70

14 Glossary 71

3

References 77

4

1 What is the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-

component Earth science modeling applications. Such applications may include a few or dozens of components

representing atmospheric, oceanic, terrestrial, or other physical domains, and their constituent processes (dynamical,

chemical, biological, etc.). Often these components are developed by different groups independently, and must be

“coupled” together using software that transfers and transforms data among the components in order to form functional

simulations.

ESMF supports the development of these complex applications in a number of ways. It introduces a set of simple,

consistent component interfaces that apply to all types of components, including couplers themselves. These interfaces

expose in an obvious way the inputs and outputs of each component. It offers a variety of data structures for transferring

data between components, and libraries for regridding, time advancement, and other common modeling functions.

Finally, it provides a growing set of tools for using metadata to describe components and their input and output

fields. This capability is important because components that are self-describing can be integrated more easily into

automated workflows, model and dataset distribution and analysis portals, and other emerging “semantically enabled”

computational environments.

ESMF is not a single Earth system model into which all components must fit, and its distribution doesn’t contain

any scientific code. Rather it provides a way of structuring components so that they can be used in many differ-

ent user-written applications and contexts with minimal code modification, and so they can be coupled together in

new configurations with relative ease. The idea is to create many components across a broad community, and so to

encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user base. It is tested nightly on more than two dozen plat-

form/compiler combinations; can be run on one processor or thousands; supports shared and distributed memory

programming models and a hybrid model; can run components sequentially (on all the same processors) or concur-

rently (on mutually exclusive processors); and supports single executable or multiple executable modes.

ESMF’s generality and breadth of function can make it daunting for the novice user. To help users navigate the

software, we try to apply consistent names and behavior throughout and to provide many examples. The large-scale

structure of the software is straightforward. The utilities and data structures for building modeling components are

called the ESMF infrastructure. The coupling interfaces and drivers are called the superstructure. User code sits

between these two layers, making calls to the infrastructure libraries underneath and being scheduled and synchronized

by the superstructure above. The configuration resembles a sandwich, as shown in Figure 1.

ESMF users may choose to extensively rewrite their codes to take advantage of the ESMF infrastructure, or they may

decide to simply wrap their components in the ESMF superstructure in order to utilize framework coupling services.

Either way, we encourage users to contact our support team if questions arise about how to best use the software, or

how to structure their application. ESMF is more than software; it’s a group of people dedicated to realizing the vision

of a collaborative model development community that spans institutional and national bounds.

2 The ESMF User’s Guide

This ESMF User’s Guide is mainly an installation and build guide for the new ESMF user and a build reference for

the experienced user. New users are strongly encouraged to download the ESMF software and try running the system

tests and examples that illustrate both ESMF utilities and coupling services.

The User’s Guide is organized as follows. The next two sections, 3 and 4, concern user support and how to submit

comments on the ESMF system to our development team. Sections 5 through 11 contain a Quick Start guide that

explains how to install the ESMF software and run the self-tests, followed by more detail on ESMF structure and

5

mailto:esmf_support@ucar.edu

Figure 1: Schematic of the ESMF “sandwich” architecture. In this design the framework consists of two parts, an

upper level superstructure layer and a lower-level infrastructure layer. User code is sandwiched between these two

layers.

Time

ESMF Superstructure

AppDriver

Component Classes: GridComp, CplComp, State

Time

ESMF Infrastructure

Data Classes: Bundle, Field, Grid, Array

Utility Classes: Clock, LogErr, DELayout, VM, Config

Time
U
ser Code

operation, such as a description of the directory structure and how to build and run the ESMF example programs.

Section 12 is an architectural overview that describes the framework’s basic goals and features. Section 13 details the

steps required to adapt a component for use with ESMF. Finally, to help you become familiar with ESMF terminology,

the last section in the User’s Guide is a glossary.

3 How to Contact User Support and Find Additional Information

The ESMF team can provide assistance in using the framework in your applications. For user support, please contact

esmf_support@ucar.edu.

More information on the ESMF project as a whole is available on the ESMF website,

http://www.earthsystemmodeling.org. The website includes release notes and known bugs for each version of the

framework, supported platforms, project history, values, and metrics, related projects, the ESMF management struc-

ture, and much more. Those curious about specific interfaces should refer to the ESMF Reference Manual for Fortran,

which contains a detailed listing and description of the ESMF API (this version of the document corresponds to the

last public version of the framework). Also available on the ESMF website is the ESMF Developer’s Guide that

details our project procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send questions and comments to esmf_support@ucar.edu.

6

mailto:esmf_support@ucar.edu
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@ucar.edu

5 Quick Start

This section gives a brief description of how to get the ESMF software, build it, and run the self-tests to verify the

installation was successful. There is also a short guide for using the bundled ESMF command line tools. More detailed

information on each of these steps is provided in sections 9, 11 and 8, respectively.

With a growing user community requiring access to ESMF, central computing resources have started providing system

wide ESMF installations. The availablity of center-managed ESMF installations dramatically increases the ease of

use of ESMF. Practically it means that if you are working on a system (such as Jaguar) that offers a standard ESMF

installation, you do not have to download, build and validate your own ESMF installation from source! Instead you

can proceed directly to using ESMF as a programming library or through access to the bundled command line tools as

described in sections 6 and 8, respectively.

5.1 Downloading ESMF

ESMF is distributed via releases on GitHub. Each release page contains release notes, known issues, and links to

supported platforms, documentation, and other related information Releases on GitHub can be found from the ESMF

web page via:

http://www.earthsystemmodeling.org -> Download

5.2 Directory Structure

The current list of directories includes the following:

• README

• build

• build_config

• makefile

• scripts

• src

The build_config directory contains subdirectories for different operating system and compiler combinations.

This is a useful area to examine if porting ESMF to a new platform.

5.3 Building ESMF

After downloading and unpacking the ESMF tar file, the build procedure is:

1. Set the required environment variables.

2. Type make info to view and verify your settings

3. Type make to build the library.

7

4. Type make check to run self-tests to verify the build was successful.

See the following subsections for more information on each of these steps. Also consult section 9 for a complete

discussion of the the ESMF build process.

5.3.1 Environment variables

The syntax for setting environment variables depends on which shell you are running. Examples of the two most

common ways to set an environment variable are:

ksh export ESMF_DIR=/home/joeuser/esmf

csh setenv ESMF_DIR /home/joeuser/esmf

The shell environment variables listed below are the ones most frequently used. There are others which address needs

on specific platforms or are needed under more unusual circumstances; see section 9 for the full list.

ESMF_DIR The environment variable ESMF_DIR must be set to the full pathname of the top level ESMF directory

before building the framework. This is the only environment variable which is required to be set on all platforms

under all conditions.

ESMF_BOPT This environment variable controls the build option. To make a debuggable version of the library set

ESMF_BOPT to g before building. The default is O (capital oh) which builds an optimized version of the library.

If ESMF_BOPT is O, ESMF_OPTLEVEL can also be set to a numeric value between 0 and 4 to select a specific

optimization level.

ESMF_COMM On systems with a vendor-supplied MPI communications library, the vendor library is chosen by

default for communications. On these systems ESMF_COMM is set to mpi, signaling to the ESMF build system

to use the vendor MPI implementation. For other systems (e.g. Linux or Darwin) where a multitude of MPI

implementations are available, ESMF_COMM must be set to indicate which implementation is used to build the

ESMF library. Set ESMF_COMM according to your situation to: mpt, mpich (version 3 and up),

mpich1, mpich2, mvapich (all versions), lam, openmpi, or intelmpi. ESMF_COMM

may also be set to user indicating that the user will set all the required flags using advanced ESMF envi-

ronment variables. Some individual MPI builds may create additional libraries that need to be linked in, such as

the legacy C++ bindings. These may be specified via the ESMF_CXXLINKLIBS and ESMF_F90LINKLIBS

environment variables.

Alternatively, ESMF comes with a single-processor MPI-bypass library which is the default for Linux and

Darwin systems. To force the use of this bypass library set ESMF_COMM equal to mpiuni.

ESMF_COMPILER The ESMF library build requires a working Fortran90 and C++ compiler. On platforms that

don’t come with a single vendor supplied compiler suite (e.g. Linux or Darwin) ESMF_COMPILER must be

set to select which Fortran and C++ compilers are being used to build the ESMF library. Notice that set-

ting the ESMF_COMPILER variable does not affect how the compiler executables are located on the system.

ESMF_COMPILER (together with ESMF_COMM) affect the name that is expected for the compiler executa-

bles. Furthermore, the ESMF_COMPILER setting is used to select compiler and linker flags consistent with the

compilers indicated.

By default Fortran and C++ compiler executables are expected to be located in a location contained in the user’s

PATH environment variable. This means that if you cannot locate the correct compiler executable via the which

command on the shell prompt the ESMF build system won’t find it either!

8

There are advanced ESMF environment variables that can be used to select specific compiler executables by

specifying the full path. This can be used to pick specific compiler executables without having to modify the

PATH environment variable.

Use ’make info’ to see which compiler executables the ESMF build system will be using according to your

environment variable settings.

To see possible values for ESMF_COMPILER, cd to $ESMF_DIR/build_config and list the directories

there. The first part of each directory name corresponds to the output of ’uname -s’ for this platform. The second

part contains possible values for ESMF_COMPILER. In some cases multiple combinations of Fortran and C++

compilers are possible, e.g. there is intel and intelgcc available for Linux. Setting ESMF_COMPILER

to intel indicates that both Intel Fortran and C++ compilers are used, whereas intelgcc indicates that the

Intel Fortran compiler is used in combination with GCC’s C++ compiler.

If you do not find a configuration that matches your situation you will need to port ESMF.

ESMF_ABI If a system supports 32-bit and 64-bit (pointer wordsize) application binary interfaces (ABIs), this vari-

able can be set to select which ABI to use. Valid values are 32 or 64. By default the most common ABI

is chosen. On x86_64 architectures three additional, more specific ABI settings are available, x86_64_32,

x86_64_small and x86_64_medium.

ESMF_SITE Build configure file site name or the value default. If not set, then the value of default is assumed.

When including platform-specific files, this value is used as the third part of the directory name (parts 1 and 2

are the ESMF_OS value and ESMF_COMPILER value, respectively.)

ESMF_ETCDIR If a user wants to add Attribute package specification files for their own customized Attribute

packages, this is where they should go. ESMF will look in this directory for files that specify which Attributes

are in an Attribute package for certain ESMF objects, and what the appropriate initial values would be for those

Attributes. The format for these Attribute package specification files is to be defined in a future ESMF release.

This environment variable is largely for internal use at this point.

ESMF_INSTALL_PREFIX This variable specifies the prefix of the installation path used during the installation

process accessible thought the install target. Libraries, F90 module files, header files and documentation all are

installed relative to ESMF_INSTALL_PREFIX by default. The ESMF_INSTALL_PREFIX may be provided

as absolute path or relative to ESMF_DIR.

5.3.2 GNU make

GNU Make is required to build the ESMF library. On some systems this will be just the command make. On others

it might be installed as gmake or gnumake. This document uses make consistently to refer to GNU Make.

Use the --version option with the locally available make commands to determine which variant corresponds to

GNU Make on your system. Use the respective command when interacting with the ESMF build system, and where

this documentation uses make.

Notice that ESMF does not utilize Autotools (configure or autoconf) or CMake. Instead, the selection of configuration

options is done by setting environment variables before building the framework. The relevant environment variables

all begin with prefix ESMF_, and are discussed in detail under section 9.5.

5.3.3 make info

make info is a command that assists the user in verifying that the ESMF variables have been set appropriately. It

also tells the user the paths to various libraries e.g. MPI that are set on the system. The user to review this information

9

to verify their settings. In the case of a build failure, this information is invaluable and will be the first thing asked for

by the ESMF support team. Below is an example output from make info:

--

Make version:

GNU Make 3.80

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

--

Fortran Compiler version:

Intel(R) Fortran Compiler for applications running on Intel(R) 64, \

Version 10.1

Build 20081024 Package ID: l_fc_p_10.1.021

Copyright (C) 1985-2008 Intel Corporation. All rights reserved.

Version 10.1

--

C++ Compiler version:

Intel(R) C++ Compiler for applications running on Intel(R) 64, Version 10.1

Build 20081024 Package ID: l_cc_p_10.1.021

Copyright (C) 1985-2008 Intel Corporation. All rights reserved.

Version 10.1

--

Preprocessor version:

gcc (GCC) 4.1.2 20070115 (SUSE Linux)

Copyright (C) 2006 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

--

ESMF_VERSION_STRING: 5.1.0

--

--

* User set ESMF environment variables *
ESMF_OS=Linux

ESMF_TESTMPMD=ON

ESMF_TESTHARNESS_ARRAY=RUN_ESMF_TestHarnessArrayUNI_2

ESMF_DIR=/nobackupp10/scvasque/daily_builds/intel/esmf

ESMF_TESTHARNESS_FIELD=RUN_ESMF_TestHarnessFieldUNI_1

ESMF_TESTWITHTHREADS=OFF

ESMF_COMM=mpiuni

ESMF_INSTALL_PREFIX= /nobackupp10/scvasque/daily_builds/intel/esmf/.. \

10

/install_dir

ESMF_TESTEXHAUSTIVE=ON

ESMF_BOPT=g

ESMF_SITE=default

ESMF_ABI=64

ESMF_COMPILER=intel

--

* ESMF environment variables *
ESMF_DIR: /nobackupp10/scvasque/daily_builds/intel/esmf

ESMF_OS: Linux

ESMF_MACHINE: x86_64

ESMF_ABI: 64

ESMF_COMPILER: intel

ESMF_BOPT: g

ESMF_COMM: mpiuni

ESMF_SITE: default

ESMF_PTHREADS: ON

ESMF_OPENMP: ON

ESMF_ARRAY_LITE: FALSE

ESMF_NO_INTEGER_1_BYTE: FALSE

ESMF_NO_INTEGER_2_BYTE: FALSE

ESMF_FORTRANSYMBOLS: default

ESMF_DEFER_LIB_BUILD: ON

ESMF_TESTEXHAUSTIVE: ON

ESMF_TESTWITHTHREADS: OFF

ESMF_TESTMPMD: ON

ESMF_TESTSHAREDOBJ: OFF

ESMF_TESTFORCEOPENMP: OFF

ESMF_TESTHARNESS_ARRAY: RUN_ESMF_TestHarnessArrayUNI_2

ESMF_TESTHARNESS_FIELD: RUN_ESMF_TestHarnessFieldUNI_1

ESMF_MPIRUN: /nobackupp10/scvasque/daily_builds/intel/esmf/src/ \

Infrastructure/stubs/mpiuni/mpirun

--

* ESMF environment variables pointing to 3rd party software *

--

* ESMF environment variables for final installation *
ESMF_INSTALL_PREFIX: /nobackupp10/scvasque/daily_builds/intel/esmf/../ \

install_dir

ESMF_INSTALL_HEADERDIR: include

ESMF_INSTALL_MODDIR: mod/modg/Linux.intel.64.mpiuni.default

ESMF_INSTALL_LIBDIR: lib/libg/Linux.intel.64.mpiuni.default

ESMF_INSTALL_BINDIR: bin/bing/Linux.intel.64.mpiuni.default

ESMF_INSTALL_DOCDIR: doc

ESMF_INSTALL_CMAKEDIR: cmake

--

* Compilers, Linkers, Flags, and Libraries *

11

Location of the preprocessor: /usr/bin/gcc

Location of the Fortran compiler: /nasa/intel/fce/10.1.021/bin/ifort

Location of the Fortran linker: /nasa/intel/fce/10.1.021/bin/ifort

Location of the C++ compiler: /nasa/intel/cce/10.1.021/bin/icpc

Location of the C++ linker: /nasa/intel/cce/10.1.021/bin/icpc

Fortran compiler flags:

ESMF_F90COMPILEOPTS: -g -fPIC -m64 -mcmodel=small -threads -openmp

ESMF_F90COMPILEPATHS: -I/nobackupp10/scvasque/daily_builds/intel/esmf/mod/ \

modg/Linux.intel.64.mpiuni.default -I/nobackupp10/scvasque/daily_builds \

/intel/esmf/src/include

ESMF_F90COMPILECPPFLAGS: -DESMF_TESTEXHAUSTIVE -DSx86_64_small=1 \

-DESMF_OS_Linux=1 -DESMF_MPIUNI

ESMF_F90COMPILEFREECPP:

ESMF_F90COMPILEFREENOCPP:

ESMF_F90COMPILEFIXCPP:

ESMF_F90COMPILEFIXNOCPP:

Fortran linker flags:

ESMF_F90LINKOPTS: -m64 -mcmodel=small -threads -openmp

ESMF_F90LINKPATHS: -L/nobackupp10/scvasque/daily_builds/intel/esmf/lib/libg/ \

Linux.intel.64.mpiuni.default -L/nasa/sgi/mpt/1.25/lib -L/nasa/intel/ \

cce/10.1.021/lib/shared -L/nasa/intel/fce/10.1.021/lib/shared -L/nasa/ \

intel/cce/10.1.021/lib -L/nasa/intel/fce/10.1.021/lib -L/nasa/intel/cce/ \

10.1.021/lib -L/usr/lib64/gcc/x86_64-suse-linux/4.1.2/ -L/usr/lib64/gcc/ \

x86_64-suse-linux/4.1.2/../../../../lib64

ESMF_F90LINKRPATHS:

-Wl,-rpath,/nobackupp10/scvasque/daily_builds/intel/esmf/lib/libg/ \

Linux.intel.64.mpiuni.default

ESMF_F90LINKLIBS: -limf -lsvml -lm -lipgo -lguide -lstdc++ -lirc -lgcc_s \

-lgcc -lirc -lpthread -lgcc_s -lgcc -lirc_s -ldl -lrt -ldl

ESMF_F90ESMFLINKLIBS: -lesmf -limf -lsvml -lm -lipgo -lguide -lstdc++ -lirc \

-lgcc_s -lgcc -lirc -lpthread -lgcc_s -lgcc -lirc_s -ldl -lrt -ldl

C++ compiler flags:

ESMF_CXXCOMPILEOPTS: -g -fPIC -m64 -mcmodel=small -pthread -openmp

ESMF_CXXCOMPILEPATHS: -I/nobackupp10/scvasque/daily_builds/intel/ esmf/src/ \

include -I/nobackupp10/scvasque/daily_builds/intel/esmf/src/Infrastructure \

/stubs/mpiuni

ESMF_CXXCOMPILECPPFLAGS: -DESMF_TESTEXHAUSTIVE -DSx86_64_small=1 \

-DESMF_OS_Linux=1 -D__SDIR__=’’ -DESMF_MPIUNI

C++ linker flags:

ESMF_CXXLINKOPTS: -m64 -mcmodel=small -pthread -openmp

ESMF_CXXLINKPATHS: -L/nobackupp10/scvasque/daily_builds/intel/esmf/lib/libg/ \

Linux.intel.64.mpiuni.default -L/nasa/intel/fce/10.1.021/lib/

ESMF_CXXLINKRPATHS: -Wl,-rpath,/nobackupp10/scvasque/daily_builds/intel/esmf/ \

lib/libg/Linux.intel.64.mpiuni.default -Wl,-rpath,/nasa/intel/fce/ \

10.1.021/lib/

ESMF_CXXLINKLIBS: -lifport -lifcoremt -limf -lsvml -lm -lipgo -lguide -lirc \

-lpthread -lgcc_s -lgcc -lirc_s -ldl -lrt -ldl

12

ESMF_CXXESMFLINKLIBS: -lesmf -lifport -lifcoremt -limf -lsvml -lm -lipgo \

-lguide -lirc -lpthread -lgcc_s -lgcc -lirc_s -ldl -lrt -ldl

--

Compiling on Thu Oct 21 02:15:56 PDT 2010 on r75i0n8

Machine characteristics: Linux r75i0n8 2.6.16.60-0.68.1.20100916-nasa \

#1 SMP Fri

Sep 17 17:49:05 UTC 2010 x86_64 x86_64 x86_64 GNU/Linux

==

5.3.4 Building makefile targets

The makefiles follow the GNU target standards where possible. The most frequently used targets for building are

listed below:

lib build the ESMF libraries only (default)

all build the libraries, unit and system tests and examples

doc build the documentation (requires specific latex macros packages and additional utilities; see Section 9 for more

details on the requirements).

info print out extensive system configuration information about what compilers, libraries, paths, flags, etc are being

used

clean remove all files built for this platform/compiler/wordsize.

clobber remove all files built for all architectures

install install the ESMF library in a custom location

5.3.5 Testing makefile targets

To build and run the unit and system tests, type:

make check

A summary report of success and failures will be printed out at the end.

See section 11.1.1 on how to set up ESMF to be able to launch the bundled test and example applications.

Other test-related targets are:

all_tests build and run all available tests and examples

build_all_tests build tests and examples; do not execute

run_all_tests run tests and examples without rebuilding; print a summary of the results

check_all_tests print out the results summary without re-executing

13

dust_all_tests remove all test and example output files

clean_all_tests remove all test and example executables and output files

For all the targets listed above, the string all_tests can be replaced with one of the strings listed below to select a

specific type of test:

unit_tests unit tests exercise a single part of the system

system_tests system tests combine functions across the system

examples examples contain code illustrating a single type of function

For example, make build_examples recompiles the example programs but does not execute them. make

dust_unit_tests removes all output files generated when executing the unit tests, but leaves the executables.

make clean_system_tests removes all executables and files associated with the system tests.

For the unit tests only, there is an additional environment variable which affects how the tests are built:

ESMF_TESTEXHAUSTIVE If this variable is set to ON before compiling the unit tests, longer and more exhaustive

unit tests will be run. Note that this is a compile-time and not run-time option.

5.3.6 Building and using bundled ESMF Command Line Tools

This section describes how the bundled ESMF command line tools can be built and used from inside the ESMF

source tree. Notice that this is sort of a quick and dirty way of accessing the ESMF applications. It is supported

as convenience to those users interested in quickly gaining access to the bundled ESMF command line tools, and

do not mind the shortcomings of this approach. Users interested in maximum portability should instead follow the

instructions provided in section 8.

To build the bundled ESMF command line tools, type:

make build_apps

This will build the command line tools and place the executables under the $ESMF_DIR/apps directory inside the

ESMF source tree. The command line tools can be directly executed from within the $ESMF_DIR/apps directory

following the system specific rules for execution. The details will depend on whether ESMF was built with or without

MPI dependency. In the latter case the system specific rules for launching parallel applications must be followed.

System specific execution details on this level are outside of ESMF’s scope.

For most systems, the MPI version of the ESMF bundled command line tools can be executed by a command equivalent

to:

mpirun -np X $(ESMF_DIR)/apps/..../<cli-name>

where X specifies the total number of PETs and cli-name is the name of the specific ESMF command line tool

to be executed. The in the path indicates the precise subdirectory structure under ./apps which follows the

standard ESMF pattern also used for the ./tests and ./examples subdirectories.

All bundled ESMF command line tool support the standard ’--help’ command line option that prints out infor-

mation on its proper use. More detailed instructions of the individual tools are available in the "Command Line Tools"

section of the ESMF Reference Manual.

14

5.4 Building ESMF with Spack

In addition to the manual installation, ESMF can be installed through use of the Spack package manager. Since there

are several ways to install Spack packages, this section aims to demonstrate creating a new, isolated Spack environment

to install the ESMF library.

For a detailed documentation of the Spack package manager see the Spack documentation page. The

ESMF Spack package page provides ESMF package specific information.

5.4.1 Creating New Spack environment

The following set of commands can be used to clone the Spack package manager, create a new environment in the

current directory, and to activate the environment for ESMF installation.

git clone -c feature.manyFiles=true --depth=2 https://github.com/spack/spack.git

. spack/share/spack/setup-env.sh

spack env create -d $PWD/envs/myesmf

spack env activate $PWD/envs/myesmf

5.4.2 Finding Available Compilers and External Packages

Once a new Spack envronment is created and activated, available compilers and external packages can be added to the

newly created environment using following Spack commands.

spack compiler find

spack external find

This will include locally available compilers and external packages to the environment specific spack.yaml file.

In general, these are useful commands for detecting a small set of commonly-used packages but for now this is

generally limited to finding build-only dependencies. The environment specific spack.yaml file can also be edited

manually to include missing compilers and external packages to the environment. More information can be found in

the Spack documentation.

5.4.3 Installing ESMF Spack Package and Its Dependencies

Since the ESMF Spack package includes different options to install the package, the following example just demon-

strates commonly used ESMF package configurations. A full list of variants that can be used to install the ESMF

Spack package can be found in the ESMF Spack package documentation.

To install ESMF with the external PIO package option, use the following commands:

spack add esmf@develop+external-parallelio

spack concretize --force --reuse

spack install

This will install the ESMF development version from the develop branch. A specific version of ESMF can be

specified by replacing develop with desired version information, e.g. 8.8.1. The user can also directly use the

spack install command with the package name and desired variants, skipping the concretize step.

15

https://spack.io
https://spack.readthedocs.io/en/latest/
https://packages.spack.io/package.html?name=esmf
https://spack.readthedocs.io/en/latest/packages_yaml.html
https://spack.readthedocs.io/en/latest/packages_yaml.html

To install a specific ESMF tag that is not included in the official list of available versions can be installed using the @=

syntax. E.g. to install ESMF beta tag 8.9.0b10, the version would be specified as esmf@=8.9.0b10.

More information about specifying specific compilers and passing argument to the Spack package manager build

system is available under the Spack documentation.

16

https://spack.readthedocs.io/en/latest/basic_usage.html

6 Compiling and Linking User Code against an ESMF Installation

Building user applications against an ESMF installation requires that the compiler and linker be able to find the

appropriate ESMF header, module and library files. If this procedure has been documented by the installer of the

ESMF library on your system then follow the directions provided.

In the absence of installation specific instructions there are two standard methods supported by ESMF to build user

code against the installation. The first method is based on a GNU makefile fragment that can be included by the user

code build infrastructure. This method requires that the user application also uses the GNU Make system. The second

method is based on CMake.

6.1 esmf.mk method

Every ESMF installation provides a file named esmf.mk that contains the information needed to build a user applica-

tion gainst the installation. The location of the esmf.mk file should be documented by the party that installed ESMF

on the system. We recommend that a single ESMF specific environment variable, ESMFMKFILE, be provided by the

system that points to the esmf.mk file. See section 9.9 for the related discussion aimed at the person that installs

ESMF on a system.

The information in esmf.mk is defined in form of variables. In fact, syntactically esmf.mk is a makefile fragment

and can be imported by an application specific makefile via the include command. All the variables in esmf.mk

start with the "ESMF_" prefix to prevent conflicts. The information in esmf.mk is fully specified and is not affected

by any variables set in the user’s environment.

The information defined in esmf.mk includes Fortran compiler and linker, as well as C++ compiler and linker. It

further includes the recommended Fortran and C++ specific compiler and linker flags for building ESMF applications.

One way of using the esmf.mk is to glean the necessary information from it. This information can then be used

either directly on the command line when compiling a user application, or to hardwire the settings into the application

specific build system. However, the recommended use of esmf.mk is to include this file in the application specific

makefile directly via the include command.

The Makefile template below demonstrates how a user build system can be constructed to leverage the esmf.mk

file. In practice, most user build systems will be more complex. However, this template does show that the added

complexity introduced by using esmf.mk is minimal. Examples of how to use this build system in realistic user

scenarios can be found in the external demos.

The advantages of using esmf.mk, over hard coding suitable compiler and linker flags into the user build system

directly, are robustness and portability. Robustness is a consequence of the fact that everything defined in esmf.mk

corresponds to the exact settings used during the ESMF library build (consistency) and during the ESMF test suite

build. Using esmf.mk thus guarantees that the user application is build in the exact same manner as the ESMF test

suite applications that undergo strict regression testing before every ESMF release. Portability means that a user build

system, which uses esmf.mk in the way the template Makefile demonstrates, will function as expected on any

system where ESMF was successfully installed and tested, without the need of modifying anything. Every esmf.mk

is generated during a specific ESMF installation using the ESMF tested settings for the host platform.

##

Makefile template for user ESMF application, leveraging esmf.mk mechanism

##

##

Finding and including esmf.mk

17

http://www.gnu.org/software/make/make.html
https://cmake.org/
http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

Note: This fully portable Makefile template depends on finding environment

variable "ESMFMKFILE" set to point to the appropriate "esmf.mk" file,

as is discussed in the User’s Guide.

However, you can still use this Makefile template even if the person

that installed ESMF on your system did not provide for a mechanism to

automatically set the environment variable "ESMFMKFILE". In this case

either manually set "ESMFMKFILE" in your environment or hard code the

location of "esmf.mk" into the include statement below.

Notice that the latter approach has negative impact on portability.

ifneq ($(origin ESMFMKFILE), environment)

$(error Environment variable ESMFMKFILE was not set.)

endif

include $(ESMFMKFILE)

##

Compiler and linker rules using ESMF_ variables supplied by esmf.mk

.SUFFIXES: .f90 .F90 .c .C

.f90:

$(ESMF_F90COMPILER) -c $(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) \

$(ESMF_F90COMPILEFREENOCPP) $<

$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKPATHS) \

$(ESMF_F90LINKRPATHS) -o $@ $*.o $(ESMF_F90ESMFLINKLIBS)

.F90:

$(ESMF_F90COMPILER) -c $(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) \

$(ESMF_F90COMPILEFREECPP) $(ESMF_F90COMPILECPPFLAGS) $<

$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKPATHS) \

$(ESMF_F90LINKRPATHS) -o $@ $*.o $(ESMF_F90ESMFLINKLIBS)

.c:

$(ESMF_CXXCOMPILER) -c $(ESMF_CXXCOMPILEOPTS) \

$(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS) \

$(ESMF_CXXCOMPILECPPFLAGS) $<

$(ESMF_CXXLINKER) $(ESMF_CXXLINKOPTS) $(ESMF_CXXLINKPATHS) \

$(ESMF_CXXLINKRPATHS) -o $@ $*.o $(ESMF_CXXESMFLINKLIBS)

.C:

$(ESMF_CXXCOMPILER) -c $(ESMF_CXXCOMPILEOPTS) \

$(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS) \

$(ESMF_CXXCOMPILECPPFLAGS) $<

$(ESMF_CXXLINKER) $(ESMF_CXXLINKOPTS) $(ESMF_CXXLINKPATHS) \

$(ESMF_CXXLINKRPATHS) -o $@ $*.o $(ESMF_CXXESMFLINKLIBS)

##

Sample targets for user ESMF applications

18

all: esmf_UserApplication esmc_UserApplication

esmf_UserApplication:

esmc_UserApplication:

##

Notice that the ESMF_F90LINKPATHS, ESMF_F90LINKRPATHS, ESMF_CXXLINKPATHS, and

ESMF_CXXLINKRPATHS variables used in the linking targets might contain paths to the specific compiler

version, MPI implementation, and 3rd party libraries (see section 9.4) used when building ESMF. The paths are

explicitly included in order to simplify the process of writing an application build system that is consistent with the

ESMF library that is used.

There are, however, situations where it is desirable to let the application decide what compiler version, MPI ver-

sion, and/or 3rd party library verson (e.g. NetCDF) to use. To this end, esmf.mk defines an alternative set

of variables: ESMF_F90ESMFLINKPATHS, ESMF_F90ESMFLINKRPATHS, ESMF_CXXESMFLINKPATHS, and

ESMF_CXXESMFLINKRPATHS. These variables only encode the precise path to the ESMF library, and do not spec-

ify where to find the compiler, MPI, and/or 3rd party libraries. When using this alternative set of variables, it becomes

the responsibility of the application build system to ensure the required libraries can be found by the linker, and are

compatible with the ESMF installation.

6.2 CMake method

An ESMF CMake find file is located at: <ESMF source directory>/cmake/FindESMF.cmake

The find file will parse the esmf.mk file created following a successful ESMF build. (See 6.1 for a description of

the esmf.mk file.) The CMake module sets esmf.mk variables as global CMake variables. When using the find

file, ESMFMKFILE must be set to the filepath of esmf.mk. If this is NOT set, then ESMF_FOUND will always

be FALSE. If ESMFMKFILE exists, then ESMF_FOUND=TRUE and all ESMF makefile variables will be set in

the global scope. Optionally, set ESMF_MKGLOBALS to a string list to filter makefile variables. For example, to

globally scope only ESMF_LIBSDIR and ESMF_APPSDIR variables, use this CMake command in CMakeLists.txt:

set(ESMF_MKGLOBALS "LIBSDIR" "APPSDIR")

19

7 Debugging of ESMF User Applications

Debugging failing applications is often a challenging task. Massive parallelism, issues with compute node access, and

large data volumes (just to name a few typical HPC aspects) add to the difficulties. For coupled applications, built

from many individual components and libraries, additional complexity is introduced by the many layers of software.

For applications utilizing ESMF, the ESMF library is one of those software layers. Due to the "framework" nature of

ESMF, the situation can be more subtle than for "simple" libraries. This is because ESMF code is called from user

code (as for "simple" libraries), as well as calling back into registered user code (the "framework" aspect of ESMF).

The consequences of this fact relating to debugging of applications are discussed in this section.

One consequence of the "framework" nature is that ESMF code is executing between major portions of user code. For

instance, when one ESMF component calls into another ESMF component, the control flow goes through the ESMF

software layer. This provides ESMF with a chance to write messages into an application wide log file. In particular, for

user code that has implemented standard return code handling, ESMF can log an error trace in the event of detecting

an error condition. The ESMF Reference Manual discusses standard "Return Code Handling" under a section of the

same name.

By default, the application wide ESMF log output is written to files that are named PET<nnn>.ESMF_LogFile,

where <nnn> is the number of the persistent execution thread (PET) that is writing. Several characteristics of the

default log can be changed during the call to ESMF_Initialize(). In order to take advantage of the ESMF log

output, it is important to ensure that the logkindflag is set to ESMF_LOGKIND_MULTI, which is the default,

or ESMF_LOGKIND_MULTI_ON_ERROR. The latter is recommended for production runs where extra log output is

minimized, and the ESMF log is only activated when an error is encountered.

Assuming that the ESMF log is active for a failing application, and the user code follows the documented return code

handling, the ESMF log files are among the first files that should be inspected. The log files are written into the

working directory that was active during the application execution. Assuming default log file naming, we recommend

the following grep command to scan for errors.

grep ERROR PET*.ESMF_LogFile

A typical error trace looks similar to the following output. Here is an example error trace for an application using the

NUOPC layer.

20210317 150338.047 ERROR PET0 atm.F90:113 Invalid argument - \

Passing error in return code

20210317 150338.047 ERROR PET0 ATM:src/addon/NUOPC/src/NUOPC_ModelBase.F90:865

20210317 150338.047 ERROR PET0 esm:src/addon/NUOPC/src/NUOPC_Driver.F90:2570

20210317 150338.047 ERROR PET0 esm:src/addon/NUOPC/src/NUOPC_Driver.F90:1287

20210317 150338.047 ERROR PET0 esm:src/addon/NUOPC/src/NUOPC_Driver.F90:466

20210317 150338.047 ERROR PET0 esmApp.F90:64 Invalid argument - \

Passing error in return code

The first two columns contain the wall clock information of when each individual log message was written. The third

and forth column indicate the type of the log message, here ERROR, and the PET number, respectively, The sixth

column contains information about the source file and line number. Finally the seventh column and beyond contain

information about the error.

Notice that error traces are logged in backward order. The first ERROR entry corresponds to the lowest level, where

the error condition was first detected. Here the error was first detected in file atm.F90, at line 113. The error is

then propagated back up to the highest application level, here ending up in file esmApp.F90, line 64. Due to the

20

framework nature of ESMF discussed earlier, it is very common to see several layers of ESMF library code in an error

trace, as is the case in this example. Notice however, that the error was first caught in "user code" atm.F90.

Even if the lowest level indicated (i.e. the start of an error trace) is inside the ESMF library, it does not immediately

indicate an issue with ESMF code. In such cases it is good to follow the error trace to the first user code entry, and

investigate what ESMF call is made just before that location. Then consider looking at the specific information passed

into the ESMF method and ensure correctness.

There are situations where an application experiences a hard crash, either triggered by the runtime library, or the

operating system itself. In these cases the ESMF log files are typically not as helpful, and might even be missing. A

hard crash that produces a code dump, a backtrace to stderr, or is caught under a debugger, can still be a good source

of information to track down the problematic issue.

An example backtrace for a hard crash is shown below.

Program received signal SIGFPE: Floating-point exception - erroneous arithmetic operation.

Backtrace for this error:

#0 0x7f9e45bed49f in ???

#1 0x40430e in realize

at /tmp/AtmOcnProto/ocn.F90:149

#2 0x7f9e49568f8b in _ZNK5ESMCI13MethodElement7executeEPvPi

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_MethodTable.C:333

#3 0x7f9e49569e74 in _ZN5ESMCI11MethodTable7executeENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEPvPiPb

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_MethodTable.C:519

#4 0x7f9e49568dea in c_esmc_methodtableexecuteef_

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_MethodTable.C:303

#5 0x7f9e4982d8da in __esmf_attachmethodsmod_MOD_esmf_methodgridcompexecute

at /tmp/esmf/src/Superstructure/AttachMethods/src/ESMF_AttachMethods.F90:1278

#6 0x7f9e4a69fcd0 in initializeipdvxp04

at /tmp/esmf/src/addon/NUOPC/src/NUOPC_ModelBase.F90:1263

#7 0x7f9e492b8d1a in _ZN5ESMCI6FTable12callVFuncPtrEPKcPNS_2VMEPi

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_FTable.C:2036

#8 0x7f9e492b605a in ESMCI_FTableCallEntryPointVMHop

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_FTable.C:765

#9 0x7f9e49654bc3 in _ZN5ESMCI3VMK5enterEPNS_7VMKPlanEPvS3_

at /tmp/esmf/src/Infrastructure/VM/src/ESMCI_VMKernel.C:2195

#10 0x7f9e49668136 in _ZN5ESMCI2VM5enterEPNS_6VMPlanEPvS3_

at /tmp/esmf/src/Infrastructure/VM/src/ESMCI_VM.C:1211

#11 0x7f9e492b64f0 in c_esmc_ftablecallentrypointvm_

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_FTable.C:922

#12 0x7f9e499f8678 in __esmf_compmod_MOD_esmf_compexecute

at /tmp/esmf/src/Superstructure/Component/src/ESMF_Comp.F90:1216

#13 0x7f9e49e5e19b in __esmf_gridcompmod_MOD_esmf_gridcompinitialize

at /tmp/esmf/src/Superstructure/Component/src/ESMF_GridComp.F90:1408

#14 0x7f9e4a63740e in loopmodelcompss

at /tmp/esmf/src/addon/NUOPC/src/NUOPC_Driver.F90:2534

#15 0x7f9e4a641e92 in initializeipdv02p3

at /tmp/esmf/src/addon/NUOPC/src/NUOPC_Driver.F90:1833

#16 0x7f9e4a6650c9 in initializep1

at /tmp/esmf/src/addon/NUOPC/src/NUOPC_Driver.F90:467

#17 0x7f9e492b8d1a in _ZN5ESMCI6FTable12callVFuncPtrEPKcPNS_2VMEPi

21

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_FTable.C:2036

#18 0x7f9e492b605a in ESMCI_FTableCallEntryPointVMHop

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_FTable.C:765

#19 0x7f9e49654bc3 in _ZN5ESMCI3VMK5enterEPNS_7VMKPlanEPvS3_

at /tmp/esmf/src/Infrastructure/VM/src/ESMCI_VMKernel.C:2195

#20 0x7f9e49668136 in _ZN5ESMCI2VM5enterEPNS_6VMPlanEPvS3_

at /tmp/esmf/src/Infrastructure/VM/src/ESMCI_VM.C:1211

#21 0x7f9e492b64f0 in c_esmc_ftablecallentrypointvm_

at /tmp/esmf/src/Superstructure/Component/src/ESMCI_FTable.C:922

#22 0x7f9e499f8678 in __esmf_compmod_MOD_esmf_compexecute

at /tmp/esmf/src/Superstructure/Component/src/ESMF_Comp.F90:1216

#23 0x7f9e49e5e19b in __esmf_gridcompmod_MOD_esmf_gridcompinitialize

at /tmp/esmf/src/Superstructure/Component/src/ESMF_GridComp.F90:1408

#24 0x401aaf in esmapp

at /tmp/AtmOcnProto/esmApp.F90:58

#25 0x401ee4 in main

at /tmp/AtmOcnProto/esmApp.F90:17

Floating exception (core dumped)

Just as for the ESMF log, the backtrace is produced in reverse order, starting at the lowest level where the problem was

encountered, tracing all the way up the call stack to main. As expected, the backtrace contains many layers of ESMF

library code. Again this does not immediately indicate that there is a problem in the library code. In this example user

code is visible at the very top of the stack esmApp.F90, and at the very bottom ocn.F90. In fact the location of the

division by zero is correctly identified by the runtime library at line 149 in file ocn.F90.

It is possible to force a hard crash within the ESMF library while logging ERRORS or WARNINGS to

the PET<nnn>.ESMF_LogFile. Doing so can be advantageous because it may produce a code dump

and/or backtrace at the initial point of error without ESMF return code handling. There are two set-

tings controlling log message error handling. The first setting, ESMF_RUNTIME_ABORT_LOGMSG_TYPES,

configures the ESMF library to abort during specified log message types, such as ESMF_LOGMSG_ERROR.

When setting ESMF_RUNTIME_ABORT_LOGMSG_TYPES, multiple log message types can be listed, such as

ESMF_LOGMSG_ERROR,ESMF_LOGMSG_WARNING. The second setting, ESMF_RUNTIME_ABORT_ACTION,

configures the ESMF library abort action. By default, the ESMF library abort handler will call MPI_Abort. This can

be changed to SIGABRT or SIGQUIT, which will raise their respective exceptions. These two settings can be config-

ured in the user environment before initializing ESMF or set in the configuration file passed to ESMF_Initialize.

An example configuration file configuring ESMF to raise SIGABRT during ESMF_LOGMSG_ERROR or

ESMF_LOGMSG_WARNING.

ESMF_RUNTIME_ABORT_ACTION: "SIGABRT"

ESMF_RUNTIME_ABORT_LOGMSG_TYPES: "ESMF_LOGMSG_ERROR,ESMF_LOGMSG_WARNING"

22

8 Using Bundled ESMF Command Line Tools

ESMF comes with a set of bundled command line tools (CLT). These applications include convenient access to general

information about an ESMF installation, and regrid weight file generation (sometimes referred to as "offline" regrid-

ding). This section provides assistance with respect to building and running the bundled CLTs. If you are using a

pre-installed ESMF on your system, follow the local instructions provided by the installer or system admin of how to

access and run the ESMF CLTs. Often access is as simple as loading a configuration module to have the correct path

to the ESMF CLT binaries added to your PATH environment variable.

There are two ways a user may choose to build and access the bundled ESMF CLTs. Users that prefer not to go

through the full ESMF installation process have the option to build the bundled CLTs inside of the ESMF source tree,

very similar to how the unit tests, system tests and examples are built. This option is outlined in section 5.3.6 and

should only be considered by users that want quick access to the CLTs and are not interested in a sharable installation

or the development of portable scripts and makefiles that use the CLTs. Users interested in the latter should consider

the more standard second option outlined below.

The bundled ESMF CLTs are built automatically in the process of installing ESMF following the instructions given in

section 9.9. On systems that offer system-wide ESMF installations (e.g. via modules or similar mechanisms) the user

need not worry about the build and installation details. Once installed, the CLTs are accessible through their precise

location on the system. For this purpose every ESMF installation provides a file named esmf.mk that contains the

variable ESMF_APPSDIR which specifies the precise CLT path.

The esmf.mk mechanism used for CLT access is the same as the one described in section 6 for writing robust and

portable user makefiles for building and linking user CLTs against an ESMF installation. One feature of the esmf.mk

mechanism is that only one single piece of information must be known about an ESMF installation to use it, and that

is the location of file esmf.mk itself. The location of this file should be documented by the party that installed ESMF

on the system. We recommend that a single ESMF specific environment variable ESMFMKFILE be provided by the

system that points to the esmf.mk file. See section 9.9 for the related discussion aimed at the person that installs

ESMF on a system.

Once the exact location of the bundled ESMF CLT files has been determined, either by inspecting the associated

esmf.mk file, or by using the ESMF_APPSDIR makefile variable directly in the user script or makefile, the CLTs

can be executed following the system specific rules for execution. The details will depend on whether ESMF was

built with or without MPI dependency. In the latter case the system specific rules for launching parallel CLTs must

be followed. System specific execution details on this level are outside of ESMF’s scope. However, ESMF does offer

specific CLT use examples as part of the external_demos module described online at the External Demos webpage.

For most systems, the MPI version of the ESMF bundled CLTs can be executed by a command equivalent to:

mpirun -np X $(ESMF_APPSDIR)/<clt-name>

where X specifies the total number of PETs and clt-name is the name of the specific ESMF command line tool to

be executed.

All bundled ESMF CLTs support the standard ’--help’ command line option that prints out information on its

proper use. More detailed instructions of the individual CLTs are available in the "Command Line Tools" section of

the ESMF Reference Manual.

23

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

9 Building and Installing ESMF

This section goes into more detail about how to build and install the ESMF software.

9.1 ESMF Download Options

Major releases of the ESMF software can be downloaded by following the instructions on the the Download link on

the ESMF website, http://www.earthsystemmodeling.org.

The ESMF is distributed as a full source code tree. Follow the instructions in the following sections to build the library

and link it with your application.

9.2 Acquiring Development Snapshots

Occasionally, it is helpful to acquire a development snapshot of ESMF in order to test emerging capabilities, optimiza-

tions, and bug fixes before they are available in a formal release. Development snaphots are “use at your own risk.”

Efforts are made to ensure that most unit and system tests are passing on typical platforms, but there are no guarantees

of the stability of development snapshots. New APIs available in development snapshots may change before the next

release.

Users aware of these risks may check out development snapshots using the appropriate git tag.

Starting with ESMF 8.3.0 beta snapshot 07, the naming convention for development tags has the form:

v<VERSION>b<NUMBER>

For example:

v8.3.0b07

Prior to this version, the tag naming convention for development tags is:

ESMF_<VERSION>_beta_snapshot_<NUMBER>

For example:

ESMF_8_2_0_beta_snapshot_23

Use the following example command as a guide to check out a specific development tag:

git clone https://github.com/esmf-org/esmf.git --branch v8.3.0b13 --depth 1

Once downloaded, development snapshots are built in the same way as releases.

24

http://www.earthsystemmodeling.org

9.3 System Specific Information

9.3.1 General Requirements

The following compilers and utilities are required for compiling, linking and testing the ESMF software. It is good

common practice to use a consistent set of Fortran/C++/C compilers from the same vendor, e.g. GNU, Intel, etc.

However, some vendor combinations of Fortran, C++, and C compilers, e.g. Intel ifort with GNU g++, are also

supported.

• Fortran compiler:

– GNU’s gfortran v7.0 and newer, or

– Intel’s ifort v18.0 and newer, or

– PGI’s pgf90 v18.1 and newer, or

– NVHPC’s nvfortran, or

– NAG’s nagfor, or

– IBM’s xlf, or

– CCE’s ftn.

• C++ compiler:

– GNU’s g++ v7.0 and newer, or

– Intel’s icpc v18.0 and newer, or

– PGI’s pgCC v18.1 and newer, or

– NVHPC’s nvc++, or

– IBM’s xlC, or

– CCE’s CC.

– LLVM’s clang

• C compiler:

– GNU’s gcc v7.0 and newer, or

– Intel’s icc v18.0 and newer, or

– PGI pgcc v18.1 and newer, or

– NVHPC’s nvcc, or

– IBM’s xlc, or

– CCE’s cc.

– LLVM’s clang

• MPI implementation compatible with the above compilers (but also see below for the MPI-bypass build option):

– OpenMPI v3.0 and newer, or

– MPICH v2.1 and newer, or

– MVAPICH v2.0 and newer, or

– IntelMPI v18.0 and newer, or

– MPT 2.17 and newer, or

25

– CRAY-MPICH v7.7 and newer.

• GNU’s gcc compiler - for a standard cpp preprocessor implementation.

• GNU Make.

• Perl - for running test scripts.

Internal packages that can optionally reference external libraries:

• LAPACK - version 3.x or newer

• ParallelIO (PIO) - version 2.5.10 or newer

• yaml-cpp - tag yaml-cpp-0.6.2 or newer

Optional external packages that must be specified for certain functions:

• NetCDF - version 3.6.x or newer (version 4.4 or newer required by PIO)

• parallel-NetCDF - version 1.2.0 or newer (version 1.12 or newer required by PIO)

• Xerces - version 3.1.0 or newer

ESMF can be built using a single-processor MPI-bypass library that comes with ESMF by setting

ESMF_COMM=mpiuni. This allows ESMF applications to be linked and run in single-process mode.

In order to build html and pdf versions of the ESMF documentation, LATEX, the latex2html conversion utility, and the

Unix/Linux dvipdf utility must be installed. The csh shell is also required to complete the documentation build.

9.3.2 Intel Compiler (Classic and oneAPI)

ESMF supports the Intel compiler suite via ESMF_COMPILER=intel. Starting in 2020, Intel began promoting their

new LLVM-based C/C++ and Fortran compiler line under the oneAPI brand. As of 2023, the older compilers are still

part of the Intel compiler suite and referred to as Intel Compiler Classic. ESMF supports both the classic and oneAPI

compiler lines. The following paragraphs provide important details that allow users to fine-tune the interaction with

the Intel compilers.

Under ESMF_OS=Linux, with ESMF_COMPILER=intel and ESMF_COMM=mpiuni set, the C, C++, and Fortran

compiler front-ends default to the classic options icc, icpc, and ifort, respectively. Any of these defaults can

be overridden by explicitly setting the ESMF_C, ESMF_CXX, or ESMF_F90 environment variables to the oneAPI

options icx, icpx, and ifx, respectively.

Under ESMF_OS=Linux, with ESMF_COMPILER=intel and ESMF_COMM=intelmpi set, the C, C++, and

Fortran compiler front-ends default to the MPI compiler wrappers mpiicc, mpicpc, and mpiifort, respectively.

It depends on the IntelMPI installation details whether classic, oneAPI, or a mixture of compilers are used underneath

the MPI wrappers. The IntelMPI defaults can be overridden by explicitly setting the I_MPI_CC, I_MPI_CXX, or

I_MPI_F90 environment variables. This is an IntelMPI feature.

The recommendation for Cray systems that use the Cray compiler wrappers cc, CC, and ftn, respectively, is to use

ESMF_OS=Unicos. In most cases this setting is detected automatically by the ESMF build system, and should not

be overridden.

Under ESMF_OS=Unicos, with ESMF_COMPILER=intel, the C, C++, and Fortran compiler front-ends default

to cc, CC, and ftn, respectively, regardless of the ESMF_COMM setting. The appropriate classic, oneAPI, or mixed

26

http://gcc.gnu.org
http://www.gnu.org/software/make/make.html
http://www.perl.com/download.csp
http://www.latex-project.org
http://www.latex2html.org

compiler combination is typically determined by the Intel environment module loaded. Common module names on

Cray systems are intel-classic, intel-oneAPI, and intel, respectively.

Tip: Use the ESMF "make info" target to query compiler version information. This can be used to determine the

appropriate settings, and to diagnose issues before kicking off the complete ESMF build procedure.

9.3.3 MacOS Darwin

ESMF supports MacOS systems via the ESMF_OS=Darwin setting, which typically is auto-detected by the ESMF

build system. Various compilers and MPI implementations are supported under Darwin using the ESMF_COMPILER

and ESMF_COMM environment variables. There are some combinations under Darwin that require special attention;

these combinations are listed below.

On Darwin with ESMF_COMPILER=gfortran and ESMF_COMM=mpich, using MPICH3 built from source, it

is important to specify the -enable-two-level-namespace configure option when building the MPICH3

library. By default, i.e. without this option, the produced MPICH compiler wrappers include a linker flag

(-flat_namespace) that causes issues with C++ exception handling under GNU g++. Building and linking ESMF

applications with MPICH compiler wrappers that specify this linker option leads to "mysterious" application aborts

during execution.

On Darwin with ESMF_COMPILER=intel, command line arguments cannot be accessed from ESMF applications

when linked against the shared library version (libesmf.dylib). There is no issue when linked against the static

version (libesmf.a). Setting the environment variable ESMF_SHARED_LIB_BUILD=OFF when building ESMF

can be used as a work around for this issue.

9.4 Third Party Libraries

Some portions of the ESMF library can offer enhanced capabilities when certain third party libraries are available.

This section describes these dependencies and the associated environment settings that allow the user to control them.

On many platforms, the ESMF library is also created as a shared library. When third party libraries are called from

ESMF, it is recommended that they are also available as shared libraries. In cases where they are not, they should at

least be compiled with the position independent code option enabled (e.g., -fPIC on Linux with gfortran/gcc) where

necessary, so that the ESMF shared library build can successfully incorporate them.

9.4.1 LAPACK

The patch recovery regridding method of the ESMF Mesh class requires solving local least squares problems. It uses

the LAPACK DGELSY solver to carry out this task.

The following environment variables control whether a minimal set of LAPACK code that comes with ESMF is used,

or whether ESMF should link against an externally available LAPACK installation. Alternatively, ESMF’s LAPACK-

dependent features can be turned off altogether.

ESMF_LAPACK Possible value: "internal" (default), "OFF", "system", "mkl", "netlib", "scsl",

openblas, <userstring>.

"internal" (default) ESMF will be compiled with LAPACK-dependent features. A minimal set of LA-

PACK/BLAS code included in ESMF will be used to satisfy the dependencies.

"OFF" Disables LAPACK-dependent code.

27

http://www.netlib.org/lapack

"system" A system-dependent external LAPACK/BLAS installation is used to satisfy the external dependen-

cies of the LAPACK-dependent ESMF code. Sets ESMF_LAPACK_LIBS appropriately.

"mkl" The Intel MKL library is used to satisfy the external dependencies of the LAPACK-dependent ESMF

code. When ESMF_COMPILER is set to "intel", ESMF_LAPACK_LIBS is set to "-mkl". Otherwise

ESMF_LAPACK_LIBS is set to "-lmkl_lapack -lmkl", unless it is already defined in the user

environment.

"netlib" The NETLIB library is used to satisfy the external dependencies of the LAPACK-dependent ESMF

code. Sets ESMF_LAPACK_LIBS to "-llapack -lblas", unless it is already defined in the user

environment.

"scsl" The SCSL library is used to satisfy the external dependencies of the LAPACK-dependent ESMF code.

Sets ESMF_LAPACK_LIBS to "-lscs", unless it is already defined in the user environment.

"openblas" The OpenBLAS library is used to satisfy the external dependencies of the LAPACK-dependent

ESMF code. Sets ESMF_LAPACK_LIBS to "-openblas", unless it is already defined in the user

environment.

<userstring> Enables ESMF’s LAPACK-dependent code, but does not set a default for

ESMF_LAPACK_LIBS. ESMF_LAPACK_LIBS, and if required, ESMF_LAPACK_LIBPATH, must be

set explicitly in the user environment.

ESMF_LAPACK_LIBPATH Typical value: /usr/local/lib (no default).

Specifies the path where the LAPACK library is located.

ESMF_LAPACK_LIBS Typical value: "-llapack -lblas" (default is dependent on ESMF_LAPACK).

Specifies the linker directive needed to link the LAPACK library to the application. On some systems, the BLAS

library must also be included.

9.4.2 NetCDF

ESMF provides the ability to read Grid and Mesh data in NetCDF format.

Beginning with NetCDF 4.2, the C and Fortran API libraries are released as separate packages. To compile ESMF with

NetCDF 4.2 and newer releases, the ESMF_NETCDF environment variable can be set to "split". The "split"

option requires the NetCDF C library, and the NetCDF Fortran API library be installed in the same directory. As an

alternative, the "nc-config" option may be used to automatically determine the include and lib directory locations.

The "nc-config" option supports separate C and Fortran directories.

The following environment variables enable, and specify the name and location of the desired NetCDF library and

associated header files:

ESMF_NETCDF Possible value: not set (default), "nc-config", "split", "standard", <userstring>.

not set (default) NetCDF-dependent features will be disabled. The ESMF_NETCDF_INCLUDE,

ESMF_NETCDF_LIBPATH, and ESMF_NETCDF_LIBS environment variables will be ignored.

"nc-config" The NetCDF nc-config and if available, nf-config, tools will be used to determine the

proper settings of ESMF_NETCDF_INCLUDE, ESMF_NETCDF_LIBPATH, and ESMF_NETCDF_LIBS.

The shell PATH environment variable must include the NetCDF bin directories where nc-config and

nf-config reside. This option supports having the main NetCDF library and the Fortran API library

reside in separate directories.

28

http://www.unidata.ucar.edu/software/netcdf/

"split" ESMF_NETCDF_LIBS will be set to "-lnetcdff -lnetcdf". This option is use-

ful for systems which have the Fortran and C bindings archived in separate library files. The

ESMF_NETCDF_INCLUDE and ESMF_NETCDF_LIBPATH environment variables will also be used, if

defined.

"standard" ESMF_NETCDF_LIBS will be set to "-lnetcdf". This option is useful when the For-

tran and C bindings are archived together in the same library file. The ESMF_NETCDF_INCLUDE and

ESMF_NETCDF_LIBPATH environment variables will also be used, if defined.

<userstring> If set, ESMF_NETCDF_INCLUDE, ESMF_NETCDF_LIBPATH, and ESMF_NETCDF_LIBS

environment variables will be used, if defined.

ESMF_NETCDF_INCLUDE Typical value: /usr/local/include (no default).

Specifies the path where the NetCDF header files are located.

ESMF_NETCDF_LIBPATH Typical value: /usr/local/lib (no default).

Specifies the path where the NetCDF library file is located.

ESMF_NETCDF_LIBS Typical value: "-lnetcdf"

Specifies the linker directives needed to link the NetCDF library to the application.

The default value depends on the setting of ESMF_NETCDF. For the typical case where ESMF_NETCDF is set

to "standard", ESMF_NETCDF_LIBS is set to "-lnetcdf". When ESMF_NETCDF is set to "split",

ESMF_NETCDF_LIBS is set to "-lnetcdff -lnetcdf".

If the hdf5 library is required, append "-lhdf5_hl -lhdf5" to the desired setting. E.g. "-lnetcdff

-lnetcdf -lhdf5_hl -lhdf5"

9.4.3 Parallel-NetCDF

ESMF provides the ability to write data using Parallel-NetCDF.

Some file systems, for example Lustre, may need to have locking attributes enabled when the file system is mounted.

The following environment variables enable and specify the name and location of the desired Parallel-NetCDF library

and associated header files:

ESMF_PNETCDF Possible value: not set (default), "pnetcdf-config", "standard", <userstring>.

When defined, enables the use of Parallel-NetCDF.

not set (default) PNETCDF-dependent features will be disabled. The ESMF_PNETCDF_INCLUDE,

ESMF_PNETCDF_LIBPATH, and ESMF_PNETCDF_LIBS environment variables will be ignored.

"pnetcdf-config" The PNetCDF pnetcdf-config tool will be used to determine the proper settings

of ESMF_PNETCDF_INCLUDE, ESMF_PNETCDF_LIBPATH, and ESMF_PNETCDF_LIBS. The shell

PATH environment variable must include the PNetCDF bin directory where pnetcdf-config resides.

"standard" ESMF_PNETCDF_LIBS will be set to "-lpnetcdf". The ESMF_PNETCDF_INCLUDE

and ESMF_PNETCDF_LIBPATH environment variables will also be used, if defined.

<userstring> If set, ESMF_PNETCDF_INCLUDE, ESMF_PNETCDF_LIBPATH, and

ESMF_PNETCDF_LIBS environment variables will be used.

ESMF_PNETCDF_INCLUDE Typical value: /usr/local/include (no default).

Specifies the path where the Parallel-NetCDF header files are located.

29

http://trac.mcs.anl.gov/projects/parallel-netcdf
http://wiki.lustre.org

ESMF_PNETCDF_LIBPATH Typical value: /usr/local/lib (no default).

Specifies the path where the Parallel-NetCDF library file is located.

ESMF_PNETCDF_LIBS Typical value: "-lpnetcdf".

Specifies the linker directives needed to link the Parallel-NetCDF library to the application.

9.4.4 PIO

ESMF provides the ability to read and write data in NetCDF format through ParallelIO (PIO), a third-party I/O soft-

ware library that is integrated into the ESMF library. The following environment variable enables PIO functionality

inside of ESMF.

The PIO code depends on MPI I/O support by the underlying MPI implementation for parallel I/O. Almost all current

MPI implementations support MPI I/O to the required degree. For NetCDF format support the integrated PIO code

depends on ESMF_NETCDF (see 9.4.2) being enabled and optionally ESMF_PNETCDF (see 9.4.3) being enabled.

ESMF_PIO Possible value: not set (default), "internal", "external", "OFF".

not set (default) PIO-dependent features will be enabled on supported platforms, as determined by the ESMF

build configuration.

"internal" PIO-dependent features will be enabled and will use the PIO library that is included and built

with ESMF. Internal builds of PIO require CMake version 2.8.12 or newer be available in the path.

"external" PIO-dependent features will be enabled and will use an external PIO library. The additional

parameters ESMF_PIO_INCLUDE (path to PIO include files) and ESMF_PIO_LIBPATH (path to PIO

library files) should also be set when using this option. The minimum version of PIO for this option is

2.5.10.

"OFF" Disables PIO-dependent code.

ESMF_PIO_INCLUDE (no default)

Specifies the path where the PIO header files are located.

ESMF_PIO_LIBPATH (no default)

Specifies the path where the PIO library is located.

9.4.5 Accelerator Software Stacks

ESMF provides the ability to query various third party accelerator software stacks and gather information about the

accelerator devices available in a system. The users can query the number of accelerator devices accessible from a

PET using the OpenCL, OpenACC, Intel MIC and OpenMP software stacks.

The following environment variables enable, and specify the name and location of the desired accelerator software

stacks and associated header files:

ESMF_ACC_SOFTWARE_STACK Possible value: not set (default), "opencl", "openacc", "intelmic",

"openmp4".

not set (default) All accelerator software stack related features will be disabled. The

ESMF_ACC_SOFTWARE_STACK_INCLUDE, ESMF_ACC_SOFTWARE_STACK_LIBPATH, and

ESMF_ACC_SOFTWARE_STACK_LIBS environment variables will be ignored.

30

https://github.com/NCAR/ParallelIO

"opencl" The ESMF library will use the OpenCL framework to query information about

accelerator devices in the system. The ESMF_ACC_SOFTWARE_STACK_INCLUDE,

ESMF_ACC_SOFTWARE_STACK_LIBPATH and ESMF_ACC_SOFTWARE_STACK_LIBS envi-

ronment variables will be used to build and link the library.

"openacc" The ESMF library will use the interfaces defined in the OpenACC standard to query infor-

mation about accelerator devices in the system. The ESMF_ACC_SOFTWARE_STACK_INCLUDE,

ESMF_ACC_SOFTWARE_STACK_LIBPATH and ESMF_ACC_SOFTWARE_STACK_LIBS environ-

ment variables are not typically defined since the standard is supported inherently by a OpenACC standard

compliant compiler.

"intelmic" The ESMF library will use the interfaces defined by the Intel MIC software stack to query in-

formation about accelerator devices in the system. The ESMF_ACC_SOFTWARE_STACK_INCLUDE,

ESMF_ACC_SOFTWARE_STACK_LIBPATH and ESMF_ACC_SOFTWARE_STACK_LIBS environ-

ment variables are not typically defined since the standard is supported inherently by the Intel compiler.

"openmp4" The ESMF library will use the interfaces defined in the OpenMP v4.0 standard to query in-

formation about accelerator devices in the system. The ESMF_ACC_SOFTWARE_STACK_INCLUDE,

ESMF_ACC_SOFTWARE_STACK_LIBPATH and ESMF_ACC_SOFTWARE_STACK_LIBS environ-

ment variables are not typically defined since the standard is supported inherently by a standard compliant

compiler.

ESMF_ACC_SOFTWARE_STACK_INCLUDE (no default)

Specifies the path where the header files for the accelerator software stack is located. If not set, this environment

variable is ignored.

ESMF_ACC_SOFTWARE_STACK_LIBPATH (no default)

Specifies the path where the libraries for the accelerator software stack is located. If not set, this environment

variable is ignored.

ESMF_ACC_SOFTWARE_STACK_LIBS (no default)

Specifies the linker directives required to link the library with the accelerator software stack. If not set, this

environment variable is ignored.

9.4.6 XERCES

ESMF provides the ability to read Attribute data in XML file format via the XERCES C++ library. (Writing Attribute

XML files is performed with the standard C++ output file stream facility, rather than with Xerces). The following

environment variables enable, and specify the name and location of the desired XERCES C++ library and associated

header files:

ESMF_XERCES Possible value: not set (default), "standard", <userstring>.

not set (default) XERCES-dependent features will be disabled. The ESMF_XERCES_INCLUDE,

ESMF_XERCES_LIBPATH, and ESMF_XERCES_LIBS environment variables will be ignored.

"standard" ESMF_XERCES_LIBS will be set to "-lxerces-c". The ESMF_XERCES_INCLUDE and

ESMF_XERCES_LIBPATH environment variables will also be used, if defined.

<userstring> If set, ESMF_XERCES_INCLUDE, ESMF_XERCES_LIBPATH, and ESMF_XERCES_LIBS

environment variables will be used, if defined.

ESMF_XERCES_INCLUDE Typical value: /usr/local/include (no default).

Specifies the path where the XERCES C++ header files are located.

31

http://xerces.apache.org/xerces-c/

ESMF_XERCES_LIBPATH Typical value: /usr/local/lib (no default).

Specifies the path where the XERCES C++ library file is located.

ESMF_XERCES_LIBS Typical value: "-lxerces-c".

Specifies the linker directives needed to link the XERCES C++ library to the application.

The default value depends on the setting of ESMF_XERCES. For the typical case where ESMF_XERCES is set

to "standard", ESMF_XERCES_LIBS is set to "-lxerces-c".

9.4.7 yaml-cpp

Support for I/O in YAML Ain’t Markup Language (YAMLTM) may be added to ESMF through the open-source

yaml-cpp library, a YAML parser and emitter written in C++ that implements YAML Version 1.2 specifications.

ESMF includes the option to build the yaml-cpp from sources kept inside the ESMF source tree, or to link against an

external build of the yaml-cpp library. The following environment variables control the details of how ESMF interacts

with yaml-cpp:

ESMF_YAMLCPP Possible values: "internal" (default), "OFF", "standard", <userstring>.

"internal" (default) The YAML-dependent code inside of ESMF will be enabled. The yaml-cpp sources

included with ESMF will be used to provide YAML support. The ESMF_YAMLCPP_INCLUDE,

ESMF_YAMLCPP_LIBPATH, and ESMF_YAMLCPP_LIBS environment variables will be ignored.

"OFF" Disables YAML-dependent code.

"standard" The YAML-dependent code inside of ESMF will be enabled. ESMF_YAMLCPP_LIBS will be

set to "-lyaml-cpp" if not set. The ESMF_YAMLCPP_INCLUDE and ESMF_YAMLCPP_LIBPATH

environment variables will also be used, if defined.

<userstring> The YAML-dependent code inside of ESMF will be enabled. If set,

ESMF_YAMLCPP_INCLUDE, ESMF_YAMLCPP_LIBPATH, and ESMF_YAMLCPP_LIBS environment

variables will be used.

ESMF_YAMLCPP_INCLUDE Typical value: /usr/local/include (no default).

Specifies the path where the yaml-cpp C++ header files are located.

ESMF_YAMLCPP_LIBPATH Typical value: /usr/local/lib (no default).

Specifies the path where the yaml-cpp C++ library file is located.

ESMF_YAMLCPP_LIBS Typical value: "-lyaml-cpp".

Specifies the linker directives needed to link the yaml-cpp C++ library to the application.

The default value depends on the setting of ESMF_YAMLCPP. For the typical case where ESMF_YAMLCPP is

set to "standard", ESMF_YAMLCPP_LIBS is set to "-lyaml-cpp".

9.4.8 MOAB

The Mesh Oriented datABase (MOAB) can be used to build an ESMF unstructured Mesh as an alternative to the

"native" ESMF Mesh implementation. The decision to use either MOAB or the native ESMF Mesh implementation is

made at run time. This aspect is described in the Reference Manual, section ESMF_MeshSetMOAB() .The default

is to use the native ESMF Mesh. ESMF will build an internal version of MOAB by default, but an external MOAB

installation can be used if desired. The build parameters covered in this section are used to determine which version

of MOAB is available to ESMF.

32

http://yaml.org
https://github.com/jbeder/yaml-cpp
http://yaml.org/spec/1.2/spec.html
https://sigma.mcs.anl.gov/moab-library/

ESMF_MOAB Possible values: "internal" (default), "OFF", "external".

"internal" (default) The MOAB dependent code inside of ESMF will be enabled. The MOAB

sources included with ESMF will be used to provide MOAB support. The ESMF_MOAB_INCLUDE,

ESMF_MOAB_LIBPATH, and ESMF_MOAB_LIBS environment variables will be ignored.

"OFF" Disables MOAB dependent code.

"external" The MOAB dependent code inside of ESMF will be enabled. The ESMF_MOAB_INCLUDE,

ESMF_MOAB_LIBPATH and ESMF_MOAB_LIBS environment variables must also be specified.

ESMF_MOAB_INCLUDE Typical value: /usr/local/include (no default).

Specifies the path where the MOAB C++ header files are located.

ESMF_MOAB_LIBPATH Typical value: /usr/local/lib (no default).

Specifies the path where the MOAB C++ library file is located.

ESMF_MOAB_LIBS Typical value: "-lMOAB" (no default).

Specifies the linker directives needed to link the MOAB C++ library to the application.

9.4.9 NUMA

The LibNUMA API for Non Uniform Memory Access (NUMA) can be used to discover the NUMA architecture at

run-time.

ESMF_NUMA Possible values: "ON", "standard", "OFF" (default).

"ON"/"standard" The NUMA dependent code inside of ESMF will be enabled. The ESMF_NUMA_LIBS

environment variable will be set to "-lnuma".

"OFF" (default) Disables NUMA dependent code.

ESMF_NUMA_INCLUDE Typically not needed. (no default).

Specifies the path where the NUMA header files are located.

ESMF_NUMA_LIBPATH Typically not needed. (no default).

Specifies the path where the NUMA library file is located.

ESMF_NUMA_LIBS Typical value: "-lnuma".

Specifies the linker directives needed to link the NUMA library to the application.

9.4.10 NVML

The NVIDIA Management Library (NVML) can be used to discover NVIDIA GPUs that are accessible at run-time.

ESMF_NVML Possible values: "ON", "standard", "OFF" (default).

"ON"/"standard" The NVML dependent code inside of ESMF will be enabled. The ESMF_NVML_LIBS

environment variable will be set to "-lnvidia-ml".

"OFF" (default) Disables NVML dependent code.

33

https://halobates.de/numaapi3.pdf
https://docs.nvidia.com/deploy/nvml-api/index.html

ESMF_NVML_INCLUDE Typically not needed. (no default).

Specifies the path where the NVML header files are located.

ESMF_NVML_LIBPATH Typically not needed. (no default).

Specifies the path where the NVML library file is located.

ESMF_NVML_LIBS Typical value: "-lnvidia-ml".

Specifies the linker directives needed to link the NVML library to the application.

9.5 ESMF Environment Variables

The following is a full alphabetical list of all environment variables which are used by the ESMF build system. The

ESMF_DIR must be set in all circumstances, while most other environment variables have defaults. However, it is

recommended to explicitly set the compiler and MPI flavor using ESMF_COMPILER and ESMF_COMM, respectively,

to ensure the expected behavior.

ESMF_ABI Possible value: 32, 64, x86_64_32, x86_64_small, x86_64_medium

If a system supports 32-bit and 64-bit (pointer wordsize) application binary interfaces (ABIs), this variable can

be set to select which ABI to use. Valid values are 32 or 64. By default the most common ABI is chosen. On

x86_64 architectures three additional, more specific ABI settings are available, x86_64_32, x86_64_small

and x86_64_medium.

ESMF_ARRAY_LITE Possible value: TRUE, FALSE (default)

Not normally set by user. ESMF auto-generates subroutine interfaces for a wide variety of data arrays of different

ranks, shapes, and types. Setting this variable to TRUE instructs ESMF to not generating interfaces for 5D, 6D,

and 7D arrays. This shrinks the amount of autogenerated code as well as the number of overloaded interfaces.

ESMF_BOPT Possible value: g, O (default)

This environment variable controls the build option. To make a debuggable version of the library set

ESMF_BOPT to g before building. The default is O (capital oh) which builds an optimized version of the

library. If ESMF_BOPT is O, ESMF_OPTLEVEL can also be set to a numeric value between 0 and 4 to select a

specific optimization level.

ESMF_C Possible value: executable

This variable can be used to override the default C compiler and linker front-end executables. The executable

may be specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_COMM Possible value: system-dependent

On systems with a vendor-supplied MPI communications library, the vendor library is chosen by default for

communications. On these systems ESMF_COMM is set to mpi, signaling to the ESMF build system to use

the vendor MPI implementation. For other systems (e.g. Linux or Darwin) where a multitude of MPI im-

plementations are available, ESMF_COMM must be set to indicate which implementation is used to build the

ESMF library. Set ESMF_COMM according to your situation to: mpt, mpich (version 3 and up),

mpich1, mpich2, mvapich (all versions), lam, openmpi, or intelmpi. ESMF_COMM

may also be set to user indicating that the user will set all the required flags using advanced ESMF envi-

ronment variables. Some individual MPI builds may create additional libraries that need to be linked in, such as

the legacy C++ bindings. These may be specified via the ESMF_CXXLINKLIBS and ESMF_F90LINKLIBS

environment variables.

Alternatively, ESMF comes with a single-processor MPI-bypass library which is the default for Linux and

Darwin systems. To force the use of this bypass library set ESMF_COMM equal to mpiuni.

34

ESMF_COMPILER Possible value: system-dependent

The ESMF library build requires a working Fortran90 and C++ compiler. On platforms that don’t come

with a single vendor supplied compiler suite (e.g. Linux or Darwin) it is recommended to explicitly set

ESMF_COMPILER to the desired compiler flavor. Notice that setting the ESMF_COMPILER variable does not

affect how the compiler executables are located on the system. ESMF_COMPILER (together with ESMF_COMM)

affect the name that is expected for the compiler executables. Furthermore, the ESMF_COMPILER setting is

used to select compiler and linker flags consistent with the compilers indicated.

By default Fortran and C++ compiler executables are expected to be located in a location contained in the user’s

PATH environment variable. This means that if you cannot locate the correct compiler executable via the which

command on the shell prompt the ESMF build system won’t find it either!

There are advanced ESMF environment variables that can be used to select specific compiler executables by

specifying the full path. This can be used to pick specific compiler executables without having to modify the

PATH environment variable.

Use ’make info’ to see which compiler executables the ESMF build system will be using according to your

environment variable settings.

To see possible values for ESMF_COMPILER, cd to $ESMF_DIR/build_config and list the directories

there. The first part of each directory name corresponds to the output of ’uname -s’ for this platform. The second

part contains possible values for ESMF_COMPILER. In some cases multiple combinations of Fortran and C++

compilers are possible, e.g. there is intel and intelgcc available for Linux. Setting ESMF_COMPILER

to intel indicates that both Intel Fortran and C++ compilers are used, whereas intelgcc indicates that the

Intel Fortran compiler is used in combination with GCC’s C++ compiler.

If you do not find a configuration that matches your situation you will need to port ESMF.

ESMF_CXX Possible value: executable

This variable can be used to override the default C++ compiler and linker front-end executables. The executable

may be specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_CXXCOMPILEOPTS Possible value: list of flags

Prepend compiler flags to the list of flags the ESMF build system determines.

ESMF_CXXCOMPILEPATHS Possible value: list of paths, each prepended with -I

Prepend compiler search paths to the list of search paths the ESMF build system determines.

ESMF_CXXCOMPILER Possible value: executable

This variable can be used to override the default C++ compiler front-end executables. The executable may be

specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_CXXLINKER Possible value: executable

This variable can be used to override the default C++ linker front-end executables. The executable may be

specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_CXXLINKLIBS Possible value: list of libraries, each prepended with -l

Prepend libraries to the list of libraries the ESMF build system determines.

ESMF_CXXLINKOPTS Possible value: list of flags

Prepend linker flags to the list of flags the ESMF build system determines.

ESMF_CXXLINKPATHS Possible value: list of paths, each prepended with -L

Prepend linker search paths to the list of search paths the ESMF build system determines.

35

ESMF_CXXLINKRPATHS Possible value: list of paths, each prepended with the correct rpath option

Prepend linker rpaths to the list of rpaths the ESMF build system determines.

ESMF_CXXOPTFLAG Possible value: flag

This variable can be used to override the default C++ optimization flag.

ESMF_CXXSTD Possible value: integer or default or sysdefault

Used to set the C++ language standard. If unset or default, the ESMF default C++ language standard is used:

C++11. If set to an integer, the integer is used to indicate the respective C++ language standard to the compiler.

ESMF does not check whether the integer corresponds to an existing language standard. Setting sysdefault

results in usage of the compiler specific default C++ language standard. This can lead to build issue if the

compiler default is below the level required by ESMF.

ESMF_DEFER_LIB_BUILD Possible value: ON (default), OFF

This variable can be used to override the deferring of the build of the ESMF library. By default, the library is

built after all of the source files have been compiled. This speeds up the build process. It also allows parallel

compilation of source code when the -j flag is used with make. Setting this environment variable to OFF forces

the library to be updated after each individual compilation, thus disabling the ability to use parallel compilation.

ESMF_DIR Possible value: absolute path

The environment variable ESMF_DIR must be set to the full pathname of the top level ESMF directory before

building the framework. This is the only environment variable which is required to be set on all platforms under

all conditions.

ESMF_F90 Possible value: executable

This variable can be used to override the default Fortran90 compiler and linker front-end executables. The

executable may be specified with absolute path overriding the location determined by default from the user’s

PATH variable.

ESMF_F90COMPILEOPTS Possible value: list of flags

Prepend compiler flags to the list of flags the ESMF build system determines.

ESMF_F90COMPILEPATHS Possible value: list of paths, each prepended with -I

Prepend compiler search paths to the list of search paths the ESMF build system determines.

ESMF_F90COMPILER Possible value: executable

This variable can be used to override the default Fortran90 compiler front-end executables. The executable may

be specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_F90IMOD Possible value: flag

This variable can be used to override the default flag (-I) used to specify a Fortran module directory.

ESMF_F90LINKER Possible value: executable

This variable can be used to override the default Fortran90 linker front-end executables. The executable may be

specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_F90LINKLIBS Possible value: list of libraries, each prepended with -l

Prepend libraries to the list of libraries the ESMF build system determines.

ESMF_F90LINKOPTS Possible value: list of flags

Prepend linker flags to the list of flags the ESMF build system determines.

36

ESMF_F90LINKPATHS Possible value: list of paths, each prepended with -L

Prepend linker search paths to the list of search paths the ESMF build system determines.

ESMF_F90LINKRPATHS Possible value: list of paths, each prepended with the correct rpath option

Prepend linker rpaths to the list of rpaths the ESMF build system determines.

ESMF_F90OPTFLAG Possible value: flag

This variable can be used to override the default Fortran90 optimization flag.

ESMF_INSTALL_BINDIR Possible value: relative or absolute path

Location into which to install the ESMF apps during installation. This location can be specified as absolute path

(starting with "/") or relative to ESMF_INSTALL_PREFIX.

ESMF_INSTALL_DOCDIR Possible value: relative or absolute path

Location into which to install the documentation during installation. This location can be specified as absolute

path (starting with "/") or relative to ESMF_INSTALL_PREFIX.

ESMF_INSTALL_HEADERDIR Possible value: relative or absolute path

Location into which to install the header files during installation. This location can be specified as absolute path

(starting with "/") or relative to ESMF_INSTALL_PREFIX.

ESMF_INSTALL_LIBDIR Possible value: relative or absolute path

Location into which to install the library files during installation. This location can be specified as absolute path

(starting with "/") or relative to ESMF_INSTALL_PREFIX.

ESMF_INSTALL_MODDIR Possible value: relative or absolute path

Location into which to install the F90 module files during installation. This location can be specified as absolute

path (starting with "/") or relative to ESMF_INSTALL_PREFIX.

ESMF_INSTALL_CMAKEDIR Possible value: relative or absolute path

Location into which to install the CMake module files during installation. This location can be specified as

absolute path (starting with "/") or relative to ESMF_INSTALL_PREFIX.

ESMF_INSTALL_PREFIX Possible value: relative or absolute path

This variable specifies the prefix of the installation path used during the installation process accessible thought

the install target. Libraries, F90 module files, header files and documentation all are installed relative to

ESMF_INSTALL_PREFIX by default. The ESMF_INSTALL_PREFIX may be provided as absolute path

(starting with "/") or relative to ESMF_DIR.

ESMF_LAPACK See 9.4.1

ESMF_LAPACK_LIBPATH See 9.4.1

ESMF_LAPACK_LIBS See 9.4.1

ESMF_MACHINE Possible value: output of uname -m where available.

Not normally set by user. This variable indicates architectural details about the machine on which the ESMF

library is being built. The value of this variable will affect which ABI settings are available and what they mean.

ESMF_MACHINE is set automatically.

ESMF_MPIBATCHOPTIONS Possible value: system-dependent

Variable used to pass system-specific queue options to the batch system. Typically the queue, project and limits

are set. See section 11.1.1 for a discussion of this option.

37

ESMF_MPILAUNCHOPTIONS Possible value: system-dependent

Variable used to pass system-specific options to the MPI launch facility. See section 11.1.1 for a discussion of

this option.

ESMF_MPIMPMDRUN Possible value: executable

This variable can be used to override the default utility used to launch parallel execution of ESMF test applica-

tions in MPMD mode. The executable in ESMF_MPIMPMDRUN may be specified with path.

ESMF_MPIRUN Possible value: executable

This variable can be used to override the default utility used to launch parallel ESMF test or example applica-

tions. The executable in ESMF_MPIRUN may be specified with path. See section 11.1.1 for a discussion of this

option.

ESMF_MPISCRIPTOPTIONS Possible value: system-dependent

Variable used to pass system-specific options to the first level MPI script accessed by ESMF. See section 11.1.1

for a discussion of this option.

ESMF_NETCDF See 9.4.2

ESMF_NETCDF_INCLUDE See 9.4.2

ESMF_NETCDF_LIBPATH See 9.4.2

ESMF_NETCDF_LIBS See 9.4.2

ESMF_NO_INTEGER_1_BYTE Possible value: TRUE (default), FALSE

Not normally set by user. Setting this variable to FALSE instructs ESMF to generating data array interfaces for

data types of 1-byte integers.

ESMF_NO_INTEGER_2_BYTE Possible value: TRUE (default), FALSE

Not normally set by user. Setting this variable to FALSE instructs ESMF to generating data array interfaces for

data types of 2-byte integers.

ESMF_OPENACC Possible value: ON, OFF (default is system dependent)

Compiles and links the ESMF library with OpenACC compiler flags.

ESMF_OPENMP Possible value: OMP4, ON, OFF (default is system dependent)

Compiles and links the ESMF library with OpenMP compiler flags. Both OMP4 and ON enable the ESMF

OpenMP features. Only with OMP4 will those features assume OpenMP 4.0 and higher.

ESMF_OPTLEVEL Possible value: numerical value

See ESMF_BOPT for details.

ESMF_OS Possible value: output of uname -s except when cross-compiling or for UNICOS/mp where ESMF_OS

is Unicos.

Not normally set by user unless cross-compiling. This variable indicates the target system for which the ESMF

library is being built. Under normal circumstances, i.e. ESMF is being build on the target system, ESMF_OS

is set automatically. However, when cross-compiling for a different target system ESMF_OS must be set to the

respective target OS. For example, when compiling for the Cray X1 on an interactive X1 node ESMF_OS will

be set automatically. However, when ESMF is being cross-compiled for the X1 on a Linux host the user must

set ESMF_OS to Unicos manually in order to indicate the intended target platform.

ESMF_PNETCDF See 9.4.3

38

ESMF_PNETCDF_INCLUDE See 9.4.3

ESMF_PNETCDF_LIBPATH See 9.4.3

ESMF_PNETCDF_LIBS See 9.4.3

ESMF_PTHREADS Possible value: ON (default on most platforms), OFF

This compile-time option controls ESMF’s dependency on a functioning Pthreads library. The default option

is set to ON with the exception of IRIX64 and platforms that don’t provide Pthreads. On IRIX64 the use of

Pthreads in ESMF is disabled by default because the Pthreads library conflicts with the use of OpenMP on this

platform.

The user can override the default setting of ESMF_PTHREADS on all platforms that provide Pthread support.

Setting the ESMF_PTHREADS environment variable to OFF will disable ESMF’s Pthreads feature set. On

platforms that don’t support Pthreads, e.g. IBM BlueGene/L or Cray XT3, the default OFF setting cannot be

overridden!

ESMF_SITE Possible value: site string, default

Build configure file site name or the value default. If not set, then the value of default is assumed. When

including platform-specific files, this value is used as the third part of the directory name (parts 1 and 2 are the

ESMF_OS value and ESMF_COMPILER value, respectively.)

ESMF_TESTESMFMKFILE Possible value: ON, OFF (default)

Variable specifying whether the ESMFMKFILE variable is evaluated to determine which ESMF installation is

being tested against. If set to the value ON, all tests and examples are build against the ESMF installation

referenced by the ESMFMKFILE variable. For OFF, the ESMFMKFILE variable is ignored and the tests and

examples are build against the ESMF under ESMF_DIR. This is the default.

ESMF_TESTEXHAUSTIVE Possible value: ON, OFF (default)

Variable specifying how to compile the unit tests. If set to the value ON, then all unit tests will be compiled and

will be executed when the test is run. If unset or set to any other value, only a subset of the unit tests will be

included to verify basic functions. Note that this is a compile-time selection, not a run-time option.

ESMF_TESTFORCEOPENACC Possible value: ON, OFF (default)

The ON setting enforces usage of OpenACC compiler flags when building ESMF test applications. This allows

testing of user-level OpenACC usage even with ESMF_OPENACC set to OFF.

ESMF_TESTFORCEOPENMP Possible value: ON, OFF (default)

The ON setting enforces usage of OpenMP compiler flags when building ESMF test applications. This allows

testing of user-level OpenMP usage even with ESMF_OPENMP set to OFF.

ESMF_TESTHARNESS_ARRAY Possible value: test harness make target (default not set)

Variable specifying the test harness makefile target for the array class. If this variable is not specified, a default

test scenario will be run for the array class. See the ESMF Software Developer’s Guide for instructions for

selecting other test harness scenarios.

ESMF_TESTHARNESS_FIELD Possible value: test harness make target (default not set)

Variable specifying the test harness makefile target for the field class. If this variable is not specified, a default

test scenario will be run for the field class. See the ESMF Software Developer’s Guide for instructions for

selecting other test harness scenarios.

ESMF_TESTMPMD Possible value: ON, OFF (default)

Variable specifying whether to run MPMD-style tests, i.e. test applications that start up as multiple separate

executables.

39

ESMF_TESTSHAREDOBJ Possible value: ON, OFF (default)

Variable specifying whether to run shared object tests. This requires that the compute environment supports

shared objects, and that the ESMF library is available in form of a shared library.

ESMF_TESTWITHTHREADS Possible value: ON, OFF (default)

If this environment variable is set to ON before the ESMF system tests are build they will activate ESMF thread-

ing in their code. Specifically each component will be executed using ESMF single threading instead of the

default non-threaded mode. The difference between non-threaded and ESMF single threaded execution should

be completely transparent. Notice that the setting of ESMF_TESTWITHTHREADS does not alter ESMF’s de-

pendency on Pthreads but tests ESMF threading features during the system tests. An ESMF library that was

compiled with disabled Pthread features (via the ESMF_PTHREADS variable) will produce ESMF error mes-

sages during system test execution if the system tests were compiled with ESMF_TESTWITHTHREADS set to

ON.

ESMF_TRACE_LIB_BUILD Possible value: ON (default), OFF

This variables determines whether extra libraries are built that are used to add additional symbols to the ESMF

tracing and profiling capability, such as MPI communication functions. If set to ON the libraries are built and

placed into the ESMF_INSTALL_LIBDIR alongside the ESMF library itself.

ESMF_XERCES See 9.4.6

ESMF_XERCES_INCLUDE See 9.4.6

ESMF_XERCES_LIBPATH See 9.4.6

ESMF_XERCES_LIBS See 9.4.6

ESMF_YAMLCPP See 9.4.7

ESMF_YAMLCPP_INCLUDE See 9.4.7

ESMF_YAMLCPP_LIBPATH See 9.4.7

ESMF_YAMLCPP_LIBS See 9.4.7

Environment variables must be set in the user’s shell or when calling make. It is not necessary to edit ESMF makefiles

or other build system files to set these variables. Here is an example of setting an environment variable in the csh/tcsh

shell:

setenv ESMF_ABI 32

In bash/ksh shell environment variables are set this way:

export ESMF_ABI=32

Environment variables can also be set from the make command line:

make ESMF_ABI=32

40

9.6 Supported Platforms

The platforms that are tested and supported depend on the release of ESMF. To see the specific list of supported

platforms, click the Supported Platforms link under one of the releases on the ESMF releases page.

All possible combinations of ESMF_OS, ESMF_COMPILER, ESMF_COMM, and ESMF_ABI build environment vari-

ables are listed in the following table. Where multiple options exist, the default value is indicated in bold. An entry of

default in the COMPILER column indicates the vendor compiler. An entry of mpi in the COMM column indicates

the vendor MPI implementation.

ESMF_OS ESMF_COMPILER ESMF_COMM ESMF_ABI

AIX default mpiuni,mpi,user 32, 64

Cygwin g95 mpiuni,mpich,mpich1,mpich2,lam,openmpi,user 32, 64

Cygwin gfortran mpiuni,mpich,mpich1,mpich2,lam,msmpi,openmpi,user 32, 64

Darwin absoft mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64

Darwin g95 mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64

Darwin gfortran mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64

Darwin gfortranclang mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64

Darwin intel mpiuni,mpich,mpich1,mpich2,mvapich,intelmpi,lam, 32, 64

openmpi,user

Darwin intelclang mpiuni,mpich,mpich1,mpich2,intelmpi,lam,openmpi,user 32, 64

Darwin intelgcc mpiuni,mpich,mpich1,mpich2,intelmpi,lam,openmpi,user 32, 64

Darwin nag mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64

Darwin pgi mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64

Darwin xlf mpiuni,mpi,mpich,mpich1,mpich2,lam,openmpi,user 32

Darwin xlfgcc mpiuni,mpi,mpich,mpich1,mpich2,lam,openmpi,user 32

IRIX64 default mpiuni,mpi,user 32, 64

Linux absoft mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64

Linux absoftintel mpiuni,mpich,mpich1,mpich2,lam,openmpi,user 32, 64

Linux aocc mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,lam,openmpi,user ia64_64,

x86_64_32,

x86_64_small,

x86_64_medium

Linux arm mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,lam,openmpi,user ia64_64,

x86_64_32,

x86_64_small,

x86_64_medium

Linux fujitsu mpiuni,mpi,user 64

Linux g95 mpiuni,mpich,mpich1,mpich2,mvapich,lam,openmpi,user 32, 64,

ia64_64,

x86_64_32,

x86_64_small,

x86_64_medium

Linux gfortran mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,lam,openmpi,user ia64_64,

x86_64_32,

x86_64_small,

x86_64_medium

Linux gfortranclang mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

lam,openmpi,user ia64_64,

41

http://earthsystemmodeling.org/static/releases.html

x86_64_32,

x86_64_small,

x86_64_medium

Linux intel mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,scalimpi,lam,openmpi,user ia64_64,

x86_64_32,

x86_64_small,

x86_64_medium,

mic

Linux intelgcc mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,lam,openmpi,user ia64_64,

x86_64_32,

x86_64_small,

x86_64_medium

Linux lahey mpiuni,mpich,mpich1,mpich2,mvapich,lam, 32, 64

openmpi,user

Linux llvm mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,lam,openmpi,user ia64_64,

x86_64_32,

x86_64_small,

x86_64_medium

Linux nag mpiuni,mpich,mpich1,mpich2,mvapich,lam, 32, 64

openmpi,user

Linux nagintel mpiuni,mpich,mpich1,mpich2,lam,openmpi,user 32, 64

Linux nvhpc mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,openmpi,user x86_64_32,

x86_64_small,

x86_64_medium

Linux pathscale mpiuni,mpich,mpich1,mpich2,lam,openmpi,user 32, 64,

x86_64_32,

x86_64_small,

x86_64_medium

Linux pgi mpiuni,mpi,mpt,mpich,mpich1,mpich2,mvapich, 32, 64,

intelmpi,scalimpi,lam,openmpi,user x86_64_32,

x86_64_small,

x86_64_medium

Linux pgigcc mpiuni,mpich,mpich1,mpich2,lam,openmpi,user 32

Linux sxcross mpiuni,mpi,user 32

Linux xlf mpiuni,mpi,user 32

MinGW gfortran mpiuni,msmpi,user 32, 64

MinGW intel mpiuni,msmpi,user 32, 64

MinGW intelcl mpiuni,msmpi,user 32, 64

OSF1 default mpiuni,mpi,user 64

SunOS default mpiuni,mpi,user 32, 64

Unicos default mpiuni,mpi,user 64

Unicos aocc mpiuni,mpi,user 64

Unicos cce mpiuni,mpi,user 64

Unicos gfortran mpiuni,mpi,user 64

Unicos intel mpiuni,mpi,user 64

Unicos nvhpc mpiuni,mpi,user 64

Unicos pathscale mpiuni,mpi,user 64

42

Unicos pgi mpiuni,mpi,user 64

Building the library for multiple architectures or options at the same time is supported; building or running the tests or

examples is restricted to one platform/architecture at a time. The output from the test cases will be stored in a separate

directories so the results will be kept separate for different architectures or options.

9.7 Building the ESMF Library

GNU Make is required to build the ESMF library. On some systems this will be just the command make. On others

it might be installed as gmake or gnumake. This document uses make consistently to refer to GNU Make.

Use the --version option with the locally available make commands to determine which variant corresponds to

GNU Make on your system. Use the respective command when interacting with the ESMF build system, and where

this documentation uses make.

Notice that ESMF does not utilize Autotools (configure or autoconf) or CMake. Instead, the selection of configuration

options is done by setting environment variables before building the framework. The relevant environment variables

all begin with prefix ESMF_, and are discussed in detail under section 9.5.

Build the library with the command:

make

Makefiles throughout the framework are configured to allow users to compile files only in the directory where make

is entered. Shared libraries are rebuilt only if necessary. In addition the entire ESMF framework may be built from

any directory by entering make all, assuming that all the environmental variables are set correctly as described in

Section 9.5.

The makefiles are also configured to allow multiple make targets to be compiled in parallel, via the make -j flag. For

example, to use eight parallel processes to build the library, use -j8:

make -j8 lib

The parallel compilation feature depends on ESMF_DEFER_LIB_BUILD=ON (the default) so that the library build

will be deferred until all files have been compiled.

The -j option should only be used during the creation of the library. The test base and examples will not work correctly

with -j set larger than 1.

Users may also run examples or execute unit tests of specific classes by changing directories to the desired class

examples or tests directories and entering make run_examples or make run_unit_tests, respec-

tively. For non-multiprocessor machines, uni-processor targets are available as make run_examples_uni or

make run_unit_tests_uni.

9.8 Building the ESMF Documentation

The ESMF source documentation consists of an ESMF User’s Guide and an ESMF Reference Manual for Fortran.

If a user does want to build the documentation, they will need to download the ESMF code repository (see section

5.1). Latex, latex2html, perl and csh must also be installed. For example, dependencies may be installed on Ubuntu

Linux using:

43

[sudo] apt-get install texlive latex2html perl csh

To build documentation:

make doc ! Builds the manuals, including pdf and html.

The resulting documentation files will be located in the top level directory $ESMF_DIR/doc

9.9 Installing the ESMF

The ESMF build system offers the standard install target to install all necessary files created during the build

process into user specified locations. The installation procedure will also install the ESMF documentation if it has

been built successfully following the procedure outlined above.

The installation location can be customized using six ESMF_ environment variables:

• ESMF_INSTALL_PREFIX – prefix for the other five variables.

• ESMF_INSTALL_HEADERDIR – where to install header files.

• ESMF_INSTALL_LIBDIR – where to install library files.

• ESMF_INSTALL_MODDIR – where to install Fortran module files.

• ESMF_INSTALL_BINDIR – where to install application files.

• ESMF_INSTALL_DOCDIR – where to install documentation files.

• ESMF_INSTALL_CMAKEDIR – where to install cmake module files.

Section 9.5 describes what each of these environment variables does and how to set them.

Install ESMF with the command:

make install

Check the ESMF installation with the command:

make installcheck

Advice to installers. To complete the installation of ESMF, a single ESMF specific environment variable should be set.

The variable is named ESMFMKFILE, and it must point to the esmf.mk file that was generated during the installation

process. Systems that support multiple ESMF installations via management software (e.g. modules, softenv, ...) should

set/reset the ESMFMKFILE environment variable as part of the configuration.

Additionally, it is typically convenient to append the user’s PATH environment variable to provide access to the ESMF

applications that were built during the installation process. The application binaries are located in the directory that

was specified as ESMF_INSTALL_BINDIR during the ESMF installation. The location is also stored in variable

ESMF_APPSDIR, defined in file esmf.mk. Systems that make ESMF installations available through management

software (e.g. modules, softenv, ...) should modify the user’s PATH environment variable as part of the configuration.

44

Hint. By default, file esmf.mk is located next to the ESMF library file in directory ESMF_INSTALL_LIBDIR.

Consequently, unless esmf.mk has been moved to a different location after the installation, the correct setting for

ESMFMKFILE is $(ESMF_INSTALL_LIBDIR)/esmf.mk.

Rationale. The only piece of information that is needed to use an ESMF installation is the exact location of the

associated esmf.mk file. This file contains all of the relevant settings and flags that allow a user to build their

application against the ESMF installation. Standardizing the mechanism by which the location of esmf.mk is made

available to the user by the system will help users in the design of portable application build systems. (See sections 6

and 8 for details about the usage of esmf.mk.) Further, modifying the user’s PATH environment variable is optional,

since the location of the ESMF application binaries is available through the esmf.mk file. However, setting the

user’s PATH variable so that the ESMF applications are directly and conveniently accessible from the command line

is recommended, especially if management software (e.g. modules, softenv, ...) is used on the system.

10 Porting ESMF

This section goes into more detail about the ESMF build system and how to port the ESMF software to new platforms.

10.1 The ESMF Build System

For most users the description of the build system in previous sections should be sufficient. Some users, however,

may wish to have a more detailed knowledge of the make system either for configuring different build options or for

porting to unsupported platforms.

10.1.1 General structure

The main components of the build system are:

• Build directories with makefile fragments

There are two directories containing makefile fragment files used by the ESMF build system.

The build directory contains the generic makefile fragment file common.mk that is included by the top level

makefile in the source tree. The common.mk contains generic build system settings and build rules used

across all platforms. A user should have no reason to edit common.mk.

The build_config directory contains subdirectories with makefile fragments (build_rules.mk) for

each supported platform defining compilers, compiler flags and the various other definitions that are necessary

to build on each platform. One of the build_rules.mk files will be included by the build/common.mk

file depending on the values of the environment variables ESMF_OS, ESMF_COMPILER and ESMF_SITE.

See below for more details on environment variables.

• Environment variables

Environment variables with the prefix ESMF_ are used to pass user specified information to the ESMF build

system. A full list of ESMF_ environment variables is provided in section 9.5 of this document.

Most environment variables are optional and the ESMF build system will use default settings if it finds these

variable unset. One piece of information that must always be provided by setting the respective environment

variable is the root of the ESMF directory. There are three sets of source codes the build system supports. All

need environment variables set to point to their top level source code directories.

45

ESMF Library

To build the ESMF library, ESMF_DIR needs to be set to the top level ESMF library source code directory.

Implementation Report

The build system needs ESMF_IMPL_DIR set to the top level source code directory of the Implementation

Report source tree to build the report and to build and run the examples.

EVA Applications

An EVA source code tree does not contain a copy of the ESMF build system. Instead it uses a copy

found in an ESMF library source code tree. Building the EVA applications requires that ESMF_EVA_DIR

and ESMF_DIR be set. ESMF_EVA_DIR has to be set to the top directory of the EVA source code.

ESMF_DIR has to be set to the top directory of an ESMF source code tree.

• Makefiles

Every source tree contains a makefile in its top level directory. This makefile includes the common.mk

file from the build directory which in turn includes the platform specific build_rules.mk file from one

of the build_config subdirectories. The top level makefile contains makefile settings specific for the

source code that it is found in.

Each directory in the source tree contains a makefile which includes the top level makefile. These local

makefiles include definitions that allow the local files and documents to be built.

10.1.2 Build configuration

A single makefile or makefile fragment from the build system never constitutes a complete set of build rules and

settings. Starting from the local makefile, successive include commands are used to string together makefiles and

makefile fragments to create a complete system of build rules and settings. Configuration of the build system is done

by including a configuration makefile fragment. A configuration for a specific machine or compiler is referred to as a

site configuration.

The string of files included is fairly short. Makefiles below the top level makefile include the top level makefile. The

top level makefile includes build/common.mk and then build/common.mk includes a configuration file from

the build_config directory. The configuration files in the build_config directory contain the platform and

site specific build settings. The os, compiler and site that a file configures is determined by its name. The configuration

makefile fragments follow the naming convention

build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/build_rules.mk

where ESMF_OS, ESMF_COMPILER and ESMF_SITE are environment variables either set by the user or given

default values by the build system. ESMF_OS is the target operating system. If the build is performed on the target

system ESMF_OS will typically have the value returned by the command uname -s. ESMF_COMPILER is the

compiler name. ESMF_SITE, if set, is generally the current machine name, the location, or the organization (e.g. mit,

cola). If there are no site specific files for a particular platform, then ESMF_COMPILER and ESMF_SITE will be set

to default. Examples:

! Default configuration for IBM AIX systems

build_config/AIX.default.default/build_rules.mk

! Linux configuration using lahey compilers.

build_config/Linux.lahey.default/build_rules.mk

46

10.1.3 Source code configuration

Some of the ESMF C++ and Fortran source files contain preprocessor directives to configure the source code for

specific platforms. The directives are included in the source code and are pre-processed before the source code is

compiled. The directives are used to determine among other things, the size of variable types.

The ESMF build system provides preprocessor directives in ESMC_Conf.h and ESMF_Conf.inc files that are

included in the source code. These files are located in

build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/ESMC_Conf.h

build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/ESMF_Conf.inc

where ESMF_OS, ESMF_COMPILER and ESMF_SITE are environment variables set by the user or given default

values be the build system. Based on the settings of these environment variables the build system provides a path to

the correct files during source code compilation.

10.2 Porting ESMF to New Platforms

The ESMF build system can be ported to other Unix platforms by adding a new platform specific make-

file fragment and two associated configuration files. These files (build_rules.mk, ESMC_Conf.h,

ESMF_Conf.inc) must be placed into a new subdirectory of the build_config directory, following the

ESMF_OS.ESMF_COMPILER.ESMF_SITE naming convention.

When porting to a new platform it is often helpful to start with a copy of the configuration of an existing ESMF port.

You may, for example, want to start with a copy of the build_config/Linux.g95.default directory when

working on a new Linux configuration.

10.2.1 Customizing the build_rules.mk fragment

The purpose of the build_rules.mk makefile fragment is to customize the build procedure for a specific platform.

The customization is done via makefile variables. The main makefile at the top level of the ESMF directory

structure first includes the common.mkmakefile fragment. This common makefile fragment defines a large number of

variables, setting them either to generally valid default values or to specific values the user has set in their environment

using ESMF_ style environment variables.

The platform specific build_rules.mk makefile fragment is included by common.mk after the variables have

been initialized, but before any rules are defined in common.mk using these variables. This gives build_rules.mk

a chance to modify these variables as it may be necessary to accommodate platform specific properties.

Fortunately only a very small subset of variables pre-defined in common.mk typically need to be modified or over-

ridden in build_rules.mk with platform specific settings. However, there are some variables that must be set in

every build_rules.mk file. These are variables that are not pre-set in common.mk.

ESMF_CXXDEFAULT Default C++ compiler to be used on this platform. This variable will be used by

common.mk to set the associated ESMF_CXX variables.

ESMF_CXXCOMPILER_VERSION Command that when executed will provide information about the version of

the C++ compiler to stdout.

ESMF_F90DEFAULT Default Fortran compiler to be used on this platform. This variable will be used by

common.mk to set the associated ESMF_F90 variables.

47

ESMF_F90COMPILER_VERSION Command that when executed will provide information about the version of

the F90 compiler to stdout.

ESMF_MPIRUNDEFAULT Default MPI job launch facility to be used on this platform. This variable will be used

by common.mk to set the associated ESMF_MPIRUN variables.

The following is a complete alphabetical list of variables that are pre-set in common.mk before build_rules.mk is

included. Some of these variables correspond to ESMF_ environment variables while others have a more complicated

dependency on the environment variables set by the user.

ESMF_ABI

ESMF_APPSDIR

ESMF_AR

ESMF_ARCREATEFLAGS

ESMF_ARCREATEFLAGSDEFAULT

ESMF_ARDEFAULT

ESMF_AREXTRACTFLAGS

ESMF_AREXTRACTFLAGSDEFAULT

ESMF_ARRAY_LITE

ESMF_BOPT

ESMF_BUILD

ESMF_BUILD_DOCDIR

ESMF_COMM

ESMF_COMPILER

ESMF_CONFDIR

ESMF_CPP

ESMF_CPPDEFAULT

ESMF_CXXCOMPILECPPFLAGS

ESMF_CXXCOMPILEOPTS

ESMF_CXXCOMPILEPATHS

ESMF_CXXCOMPILEPATHSLOCAL

ESMF_CXXCOMPILER

ESMF_CXXCOMPILERDEFAULT

ESMF_CXXESMFLINKLIBS

ESMF_CXXLINKER

48

ESMF_CXXLINKERDEFAULT

ESMF_CXXLINKLIBS

ESMF_CXXLINKOPTS

ESMF_CXXLINKPATHS

ESMF_CXXLINKRPATHS

ESMF_CXXOPTFLAG

ESMF_CXXOPTFLAG_G

ESMF_CXXOPTFLAG_O

ESMF_CXXOPTFLAG_X

ESMF_DIR

ESMF_DOCDIR

ESMF_EXDIR

ESMF_F90COMPILECPPFLAGS

ESMF_F90COMPILEFIXCPP

ESMF_F90COMPILEFIXNOCPP

ESMF_F90COMPILEFREECPP

ESMF_F90COMPILEFREENOCPP

ESMF_F90COMPILEOPTS

ESMF_F90COMPILEPATHS

ESMF_F90COMPILEPATHSLOCAL

ESMF_F90COMPILER

ESMF_F90COMPILERDEFAULT

ESMF_F90ESMFLINKLIBS

ESMF_F90IMOD

ESMF_F90LINKER

ESMF_F90LINKERDEFAULT

ESMF_F90LINKLIBS

ESMF_F90LINKOPTS

ESMF_F90LINKPATHS

ESMF_F90LINKRPATHS

ESMF_F90MODDIR

49

ESMF_F90OPTFLAG

ESMF_F90OPTFLAG_G

ESMF_F90OPTFLAG_O

ESMF_F90OPTFLAG_X

ESMF_GREPV

ESMF_INCDIR

ESMF_INSTALL_BINDIR

ESMF_INSTALL_BINDIR_ABSPATH

ESMF_INSTALL_CMAKEDIR

ESMF_INSTALL_CMAKEDIR_ABSPATH

ESMF_INSTALL_DOCDIR

ESMF_INSTALL_DOCDIR_ABSPATH

ESMF_INSTALL_HEADERDIR

ESMF_INSTALL_HEADERDIR_ABSPATH

ESMF_INSTALL_LIBDIR

ESMF_INSTALL_LIBDIR_ABSPATH

ESMF_INSTALL_MODDIR

ESMF_INSTALL_MODDIR_ABSPATH

ESMF_INSTALL_PREFIX

ESMF_INSTALL_PREFIX_ABSPATH

ESMF_LDIR

ESMF_LIBDIR

ESMF_LOCOBJDIR

ESMF_MACHINE

ESMF_MODDIR

ESMF_MPIBATCHOPTIONS

ESMF_MPILAUNCHOPTIONS

ESMF_MPIMPMDRUN

ESMF_MPIMPMDRUNDEFAULT

ESMF_MPIRUN

ESMF_MPIRUNDEFAULT

50

ESMF_MPISCRIPTOPTIONS

ESMF_MV

ESMF_NO_INTEGER_1_BYTE

ESMF_NO_INTEGER_2_BYTE

ESMF_OS

ESMF_OPTLEVEL

ESMF_PTHREADS

ESMF_PTHREADSDEFAULT

ESMF_RANLIB

ESMF_RANLIBDEFAULT

ESMF_RM

ESMF_RPATHPREFIX

ESMF_SED

ESMF_SEDDEFAULT

ESMF_SITE

ESMF_SITEDIR

ESMF_SL_LIBLIBS

ESMF_SL_LIBLINKER

ESMF_SL_LIBOPTS

ESMF_SL_LIBS_TO_MAKE

ESMF_SL_SUFFIX

ESMF_STDIR

ESMF_TEMPLATES

ESMF_TESTDIR

ESMF_TESTEXHAUSTIVE

ESMF_TESTMPMD

ESMF_TESTWITHTHREADS

ESMF_UTCDIR

ESMF_UTCSCRIPTS

ESMF_WC

51

10.2.2 Customizing ESMC_Conf.h and ESMF_Conf.inc

The ESMC_Conf.h file is used to define several settings used during compilation of ESMF library code written in

C++.

FTN_X(func) Macro that will correctly expand "func" to match the Fortran symbol convention. Use this macro for

function names that contain an underscore.

FTNX(func) Macro that will correctly expand "func" to match the Fortran symbol convention. Use this macro for

function names that do not contain an underscore.

ESMCI_FortranStrLenArg Typedef to match the data type of the ’hidden’ string length argument that Fortran uses

when passing CHARACTER strings.

ESMF_PRESENT(arg) Macro for a boolean expression that returns TRUE if "arg" is a "present" argument passed

from Fortran into C++.

ESMC_POINTER_SIZE Size of C pointer in bytes.

The ESMF_Conf.inc file is used to optionally define two important macros:

ESMF_NO_INITIALIZERS If this macro is defined ESMF will assume that initializers inside Fortran derived type

definitions are not supported.

ESMF_SEQUENCE_BUG If this macro is defined ESMF will not use the SEQUENCE specifier inside Fortran de-

rived types under certain circumstances.

10.3 Shared Object Libraries

On many platforms, a shared object library is created in addition to the standard .a archive library. Shared object

libraries are libraries that are pre-linked into an executable. They can then be linked to an application at run time.

There are many advantages to using shared libraries. These include smaller executable files, and shared memory usage

when multiple executables are running - as is often the case of programs using MPI. They also allow easier bug fixing

and development because the library can often be upgraded without necessarily re-linking the executables which call

into it.

Shared object libraries can be pre-linked to system libraries and using them can simplify dealing with ESMF’s depen-

dency on Fortran90 and C++ runtime libraries.

See 9.4 for third party library build requirements.

11 Validating an ESMF Build

The following subsections go into more detail about how to run the tests and examples included with the ESMF

software. This is the recommended method of regression testing ESMF, and is routinely used during library code

development. Running the regression tests against an existing ESMF installation is also supported, and offers a general

way to validate a pre-installed ESMF library.

52

11.1 Running ESMF Self-Tests

Robustness and portability are primary goals of the ESMF development effort. To ensure that these goals are met,

the ESMF includes a comprehensive suite of tests. They allow testing and validation of everything from individual

functions to complete system tests. These test suites are used by the ESMF development team as part of their regular

development process. ESMF users can run the testing suites to verify that the framework software was built and

installed properly, and is running correctly on a particular platform.

11.1.1 Setting up ESMF to run test suite applications

Unless the ESMF library was built in MPI-bypass mode (mpiuni), all applications compiled and linked against ESMF

automatically become MPI applications and must be executed as such. The ESMF test suite and example applications

are no different in this respect.

Details of how to execute MPI applications vary widely from system to system. ESMF uses an mpirun script mecha-

nism to abstract away most of these differences. All ESMF makefile targets that require the execution of applications

do this by launching the application via the executable specified in the ESMF_MPIRUN variable. ESMF assumes that

an MPI applications can be launched across N processes by calling

$(ESMF_MPIRUN) -np N application

and that the output of the application arrives at the calling shell via stdout and stderr.

First, on systems that allow direct launching of MPI application via a suitable mpirun facility, ESMF can use it

directly. This is the ESMF default for all those configurations that come with a suitable mpirun. In these cases the

ESMF_MPIRUN environment variable does not need to be set by the user.

There are systems, however, that allow direct launching of MPI application but provide a launch mechanism that is

incompatible with ESMF’s assumptions. In these cases a simple mpirun wrapper is required. The ESMF ./scripts

directory contains wrappers for several cases in this class, e.g. for interactive POE access on IBM machines and

aprun, as well as yod on Cray machines. The ESMF configurations will access the appropriate wrapper scripts by

default if necessary.

Secondly, there are those systems that utilize batch software to access the parallel execution environment. One option

is to execute the ESMF test targets from within a batch session, either interactively or from within a script. In this

case the batch software does not add any additional complexity for ESMF. The same issues discussed above, of how

to launch an MPI application, apply directly.

However, in some cases it is more convenient to execute the ESMF test target on the front-end machine, and have

ESMF access the batch software each time it needs to launch an application. In fact, on IBM systems this is often

the only working option, because the integrated POE system will execute each application on the exact same number

of processes specified during batch access, regardless of how many ways in parallel a specific application needs to be

run.

Two modes of operation need to be considered in the case of the ESMF batch access. First, if interactive batch

access is available, it is straightforward to write an mpirun script that fulfills the ESMF requirements outlined above.

The ESMF ./scripts directory contains several scripts that access various parallel launching facilities though

interactive LSF.

Second, if interactive batch access is not available, a more complex scripting approach is necessary. The basic require-

ments in this case are that ESMF must be able to launch MPI applications across N processes by calling

$(ESMF_MPIRUN) -np N application ,

53

that the output of the application will be available in a file named application.stdout after the script finishes,

and that the ESMF_MPIRUN script blocks execution until application.stdout has become accessible.

The ESMF ./scripts directory contains scripts of this flavor for a wide variety of batch systems. Most of these

scripts, when called through ESMF, will generate a customized, temporary batch script for a specific executable "on

the fly" and submit this batch script to the queuing software. The script then waits for completion of the submitted job,

after which it copies the output, received through a system specific mechanism, into the prescribed file.

Regardless of whether the batch system access is interactive or not, it is often necessary to specify various system

specific options when calling the batch submission tool. ESMF utilizes the ESMF_MPIBATCHOPTIONS environment

variable to pass user supplied values to the batch system.

The environment variable ESMF_MPISCRIPTOPTIONS is available to pass user specified options to the actual

script specified by ESMF_MPIRUN. However, ESMF_MPISCRIPTOPTIONS will only be added automatically to

the ESMF_MPIRUN call if the specified ESMF_MPIRUN can be found in the ESMF ./scripts directory.

Finally, the value of ESMF_MPILAUNCHOPTIONS is passed to the MPI launch facility by default, i.e if

ESMF_MPIRUN was not specified by the user. In case the user specifies ESMF_MPIRUN to be anything else but

scripts out of the ESMF ./scripts directory, it is the user’s responsibility to add ESMF_MPISCRIPTOPTIONS

to ESMF_MPIRUN and/or to utilize ESMF_MPILAUNCHOPTIONS within the specified script.

The possibilities covered by the generic scripts provided in the ESMF ./scripts directory, combined with the

ESMF_MPISCRIPTOPTIONS, ESMF_MPIBATCHOPTIONS, and ESMF_MPILAUNCHOPTIONS environment vari-

ables, will satisfy the majority of common situations. There are, however, circumstances for which a customized,

user-provided mpirun script is necessary. One such situation arises with the LoadLeveler batch software. LoadLeveler

typically requires a list of options specified in the actual batch script. This is most easily handled by a script that

produces such a system and user specific script "on the fly". Another situation is where certain modules or software

packages need to be made available inside the batch script. Again this is most easily handled by a customized script

the user writes and provides to ESMF via the ESMF_MPIRUN environment variable. This will override any default

settings for the configuration and rely on the user provided script instead.

Users that face the need to write a customized mpirun script for their parallel execution environment are en-

couraged to start with the closest match from the ESMF ./scripts directory and customize it to their sit-

uation. The best way to see how the existing scripts are used on the supported platforms is to go to the

http://www.earthsystemmodeling.org/download/platforms/ web page and follow the link for the platform of inter-

est. Each test report contains the output of make info, which lists the settings of the ESMF_MPIxxx environment

variables.

11.1.2 Running ESMF unit tests

The unit tests provided with the ESMF library evaluate the following:

• correctness of individual functions

• behavior of individual modules or classes

• appropriate error handling

Unit tests can be run in either an exhaustive or a non-exhaustive (sanity check) mode. The exhaustive mode includes

the sanity check tests. Typically, sanity checks for each ESMF capability include creating and destroying an object

and testing its basic function using a valid argument set. In the exhaustive mode, a wide range of valid and non-valid

arguments are evaluated for correct behavior.

The following commands are used to build and run the unit tests provided with the ESMF:

54

http://www.earthsystemmodeling.org/download/platforms/

make [ESMF_TESTEXHAUSTIVE=<ON,OFF>] unit_tests

make [ESMF_TESTEXHAUSTIVE=<ON,OFF>] unit_tests_uni

The tests_uni target runs the tests on a single processor. The tests target runs the test on multiple processors.

The non-exhaustive set of unit tests should all pass. At this point in development, the exhaustive tests do not all pass.

Current problems with unit tests are being tracked and corrected by the ESMF development team.

The results of running the unit tests can be found in the following location:

${ESMF_DIR}/test/test${ESMF_BOPT}/${ESMF_OS}.${ESMF_COMPILER}.${ESMF_ABI}. \

${ESMF_SITE}

For example, if your esmf source files have been placed in:

/usr/local/esmf

If your platform is a Linux uni-processor that has an installed Lahey Fortran compiler and ESMF_COMPILER has

been set to lahey, then the build system configuration file will be:

build_config/Linux.lahey.default/build_rules.mk

If you want to run a debug version of non-exhaustive unit tests, then you use these commands from /usr/local/esmf:

setenv ESMF_DIR /usr/local/esmf

make ESMF_BOPT=g ESMF_SITE=lahey ESMF_TESTEXHAUSTIVE=OFF tests_uni

If you are using ksh, then replace the setenv command with:

export ESMF_DIR=/usr/local/esmf

The results of the unit tests will be in:

/usr/local/esmf/test/testg/Linux.lahey.32.default/

At the end of unit test execution a script runs to analyze the results.

The script output indicates whether there are any unit test failures. If any unit tests fail, please check if the failures

are listed as known bugs in the ESMF release page http://www.earthsystemmodeling.org/download/releases.shtml for

your platform and compiler. If the failures are not listed please contact ESMF Support at esmf_support@ucar.edu

Please indicate which unit tests are failing, and attach the output of the "make info" command to the email.

The script output indicates whether there are any unit test failures. The following is a sample from the script output:

The unit tests in the following files all pass:

src/Infrastructure/Array/tests/ESMF_ArrayUTest.F90

55

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@ucar.edu

src/Infrastructure/ArrayDataMap/tests/ESMF_ArrayDataMapUTest.F90

src/Infrastructure/Base/tests/ESMF_BaseUTest.F90

src/Infrastructure/FieldBundle/tests/ESMF_FieldBundleUTest.F90

src/Infrastructure/FieldBundleDataMap/tests/ESMF_FieldBundleDataMapUTest.F90

src/Infrastructure/Config/tests/ESMF_ConfigUTest.F90

src/Infrastructure/DELayout/tests/ESMF_DELayoutUTest.F90

src/Infrastructure/Field/tests/ESMF_FRoute4UTest.F90

src/Infrastructure/Field/tests/ESMF_FieldUTest.F90

src/Infrastructure/FieldComm/tests/ESMF_FieldGatherUTest.F90

src/Infrastructure/FieldDataMap/tests/ESMF_FieldDataMapUTest.F90

src/Infrastructure/Grid/tests/ESMF_GridUTest.F90

src/Infrastructure/LocalArray/tests/ESMF_ArrayDataUTest.F90

src/Infrastructure/LocalArray/tests/ESMF_ArrayF90PtrUTest.F90

src/Infrastructure/LocalArray/tests/ESMF_LocalArrayUTest.F90

src/Infrastructure/LogErr/tests/ESMF_LogErrUTest.F90

src/Infrastructure/Regrid/tests/ESMF_Regrid1UTest.F90

src/Infrastructure/Regrid/tests/ESMF_RegridUTest.F90

src/Infrastructure/TimeMgr/tests/ESMF_AlarmUTest.F90

src/Infrastructure/TimeMgr/tests/ESMF_CalRangeUTest.F90

src/Infrastructure/TimeMgr/tests/ESMF_ClockUTest.F90

src/Infrastructure/TimeMgr/tests/ESMF_TimeIntervalUTest.F90

src/Infrastructure/TimeMgr/tests/ESMF_TimeUTest.F90

src/Infrastructure/VM/tests/ESMF_VMBarrierUTest.F90

src/Infrastructure/VM/tests/ESMF_VMBroadcastUTest.F90

src/Infrastructure/VM/tests/ESMF_VMGatherUTest.F90

src/Infrastructure/VM/tests/ESMF_VMScatterUTest.F90

src/Infrastructure/VM/tests/ESMF_VMSendVMRecvUTest.F90

src/Infrastructure/VM/tests/ESMF_VMUTest.F90

src/Superstructure/Component/tests/ESMF_CplCompCreateUTest.F90

src/Superstructure/Component/tests/ESMF_GridCompCreateUTest.F90

src/Superstructure/State/tests/ESMF_StateUTest.F90

The following unit test files failed to build, failed to execute or

crashed during execution:

src/Infrastructure/TimeMgr/tests/ESMF_CalendarUTest.F90

src/Infrastructure/VM/tests/ESMF_VMSendRecvUTest.F90

The following unit test files had failed unit tests:

src/Infrastructure/Field/tests/ESMF_FRoute8UTest.F90

src/Infrastructure/Grid/tests/ESMF_GridCreateUTest.F90

The following individual unit tests fail:

FAIL DELayout Get Test, ESMF_FRoute8UTest.F90, line 139

FAIL Grid Distribute Test, ESMF_GridCreateUTest.F90, line 198

56

The stdout files for the unit tests can be found at:

/home/bluedawn/svasquez/script_dirs/daily_builds/esmf/test/testO/ \

AIX.default.64.default

Found 1224 exhaustive multi processor unit tests, 1220 pass and 4 fail.

The following is an example of the output generated when a unit test fails:

ESMF_FieldUTest.stdout: FAIL Unique default Field names Test, FLD1.5.1

& 1.7.1, ESMF_FieldUTest.F90, line 204 Field names

not unique

11.1.3 Running ESMF system tests

The system tests provided with the ESMF library evaluate:

• interface agreement between parts of the system

• behavior of the system as a whole

The current system test suite includes tests that perform layout reduction operations, redistribution-transpose, halo

operations, component creation and intra-grid communication. Some of the system tests are no longer compatible with

the current API, but are included in the release for completeness. A complete description of each available system

test and its current compatibility status can be found at the ESMF website, http://www.earthsystemmodeling.org. The

testing and validation page is accessible from the Development link on the navigation bar.

The following commands are used to build and run the system tests:

make [SYSTEM_TEST=xxx] system_tests

make [SYSTEM_TEST=xxx] system_tests_uni

The system_tests_uni target runs the tests on a single processor. The system_tests target runs the test on

multiple processors.

If a particular SYSTEM_TEST is not specified, then all available system tests are built and run.

The results of the test can be found in the following location:

${ESMF_DIR}/test/test${ESMF_BOPT}/${ESMF_OS}.${ESMF_COMPILER}.${ESMF_ABI}. \

${ESMF_SITE}

For example, if your ESMF source files have been placed in your home directory:

~/esmf

and your platform and compiler configuration is:

57

http://www.earthsystemmodeling.org

Alpha multi-processor using the native compiler

and you want to run an optimized version of system test SimpleCoupling, then you use these commands from the

directory /̃esmf.

setenv ESMF_PROJECT <project_name>

make ESMF_DIR=‘pwd‘ SYSTEM_TEST=ESMF_SimpleCoupling system_tests

If you are using ksh then replace the setenv command with this:

export ESMF_PROJECT=<project_name>

The results will be in:

~/esmf/test/testO/OSF1.default.64.default/ESMF_SimpleCouplingSTest.stdout

At the end of system test execution a script runs to analyze the results.

The script output indicates whether there are any system test failures. If any system tests fail, please check if the failures

are listed as known bugs in the ESMF release page http://www.earthsystemmodeling.org/download/releases.shtml for

your platform and compiler. If the failures are not listed please contact ESMF Support at esmf_support@ucar.edu

Please indicate which system tests are failing, and attach the output of the "make info" command to the email.

The script output indicates whether there are any system test failures. The following is a sample from the script output:

The following system tests passed:

src/system_tests/ESMF_CompCreate/ESMF_CompCreateSTest.F90

src/system_tests/ESMF_FieldExcl/ESMF_FieldExclSTest.F90

src/system_tests/ESMF_FieldHalo/ESMF_FieldHaloSTest.F90

src/system_tests/ESMF_FieldHaloPer/ESMF_FieldHaloPerSTest.F90

src/system_tests/ESMF_FieldRedist/ESMF_FieldRedistSTest.F90

src/system_tests/ESMF_FieldRegrid/ESMF_FieldRegridSTest.F90

src/system_tests/ESMF_FieldRegridMulti/ESMF_FieldRegridMultiSTest.F90

src/system_tests/ESMF_FieldRegridOrder/ESMF_FieldRegridOrderSTest.F90

src/system_tests/ESMF_FlowComp/ESMF_FlowCompSTest.F90

src/system_tests/ESMF_FlowWithCoupling/ESMF_FlowWithCouplingSTest.F90

src/system_tests/ESMF_SimpleCoupling/ESMF_SimpleCouplingSTest.F90

src/system_tests/ESMF_VectorStorage/ESMF_VectorStorageSTest.F90

The following system tests failed, did not build, or did not execute:

src/system_tests/ESMF_FieldRegridConserv/ESMF_FieldRegridConsrvSTest.F90

src/system_tests/ESMF_RowReduce/ESMF_RowReduceSTest.F90

58

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@ucar.edu

The stdout files for the system_tests can be found at:

/home/bluedawn/svasquez/script_dirs/daily_builds/esmf/test/testO/ \

AIX.default.64.default

Found 14 system tests, 12 passed and 2 failed.

11.2 Running ESMF Examples

11.2.1 Example source code

Example source code for each class is found in the class’s example directory. For example, source code for the Time

Manager class examples are found in this directory:

ESMF_DIR/src/Infrastructure/TimeMgr/examples/

While the example code is formatted to be included in the documentation, it also runs and compiles to ensure accuracy.

Examples generally contain simple usage of the basic methods for the class.

11.2.2 Building and running examples

The GNU makefile targets examples and examples_uni build and run programs found in a class’s examples

directory. After the examples are built, the examples target runs the examples using multiple processors, while

examples_uni runs the examples on a single processor.

These targets first build the ESMF library.

Run from ESMF_DIR, this command will build and run all examples on multiple processors:

make examples

If the command is run in an example source code directory, then only the example from that directory will be built and

run. The examples and output files are created in this directory:

ESMF_DIR/examples/examples$ESMF_BOPT/$ESMF_OS.$ESMF_COMPILER.$ESMF_ABI. \

$ESMF_SITE/

The name of an output file will begin with the name of the example that created it followed by .stdout.

At the end of examples execution a script runs to analyze the results.

The script output indicates whether there are any example failures. If any examples fail, please check if the failures

are listed as known bugs in the ESMF release page http://www.earthsystemmodeling.org/download/releases.shtml for

your platform and compiler. If the failures are not listed please contact ESMF Support at esmf_support@ucar.edu

Please indicate which examples are failing, and attach the output of the "make info" command to the email.

The following is a sample from the script output:

59

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@ucar.edu

The following examples passed:

src/Infrastructure/Array/examples/ESMF_ArrayCreateEx.F90

src/Infrastructure/Array/examples/ESMF_ArrayGetEx.F90

src/Infrastructure/ArrayComm/examples/ESMF_ArrayCommEx.F90

src/Infrastructure/ArrayDataMap/examples/ESMF_ArrayDataMapEx.F90

src/Infrastructure/ArraySpec/examples/ESMF_ArraySpecEx.F90

src/Infrastructure/FieldBundle/examples/ESMF_FieldBundleCreateEx.F90

src/Infrastructure/FieldBundleDataMap/examples/ESMF_FieldBundleDataMapEx.F90

src/Infrastructure/DELayout/examples/ESMF_DELayoutEx.F90

src/Infrastructure/Field/examples/ESMF_FieldCreateEx.F90

src/Infrastructure/Field/examples/ESMF_FieldFromUserEx.F90

src/Infrastructure/Field/examples/ESMF_FieldGlobalEx.F90

src/Infrastructure/Field/examples/ESMF_FieldWriteEx.F90

src/Infrastructure/FieldComm/examples/ESMF_FieldCommEx.F90

src/Infrastructure/FieldDataMap/examples/ESMF_FieldDataMapEx.F90

src/Infrastructure/LogErr/examples/ESMF_LogErrEx.F90

src/Infrastructure/Regrid/examples/ESMF_RegridEx.F90

src/Infrastructure/Route/examples/ESMF_RouteEx.F90

src/Infrastructure/TimeMgr/examples/ESMF_AlarmEx.F90

src/Infrastructure/TimeMgr/examples/ESMF_CalendarEx.F90

src/Infrastructure/TimeMgr/examples/ESMF_ClockEx.F90

src/Infrastructure/TimeMgr/examples/ESMF_TimeEx.F90

src/Infrastructure/VM/examples/ESMF_VMAllFullReduceEx.F90

src/Infrastructure/VM/examples/ESMF_VMComponentEx.F90

src/Infrastructure/VM/examples/ESMF_VMDefaultBasicsEx.F90

src/Infrastructure/VM/examples/ESMF_VMGetMPICommunicatorEx.F90

src/Infrastructure/VM/examples/ESMF_VMScatterVMGatherEx.F90

src/Infrastructure/VM/examples/ESMF_VMSendVMRecvEx.F90

src/Superstructure/Component/examples/ESMF_AppMainEx.F90

src/Superstructure/Component/examples/ESMF_CplEx.F90

src/Superstructure/Component/examples/ESMF_GCompEx.F90

src/Superstructure/State/examples/ESMF_StateEx.F90

src/Superstructure/State/examples/ESMF_StateReconcileEx.F90

The following examples failed, did not build, or did not execute:

src/Infrastructure/Grid/examples/ESMF_GridCreateEx.F90

src/Infrastructure/TimeMgr/examples/ESMF_TimeIntervalEx.F90

The stdout files for the examples can be found at:

/home/bluedawn/svasquez/script_dirs/daily_builds/esmf/examples/

examplesO/AIX.default.64.default

60

Found 34 examples, 32 passed and 2 failed.

11.3 Validating an existing ESMF installation

It is becoming increasingly common to find pre-installed ESMF libraries on professionally maintained HPC systems.

Often multiple versions of ESMF are available via environment modules. Before using such a third-party ESMF

installation, a user may want ot validate that it is working correctly. System administrators also often need a simple

method to re-validate an existing ESMF installation, e.g. after a system update. ESMF offers a simple way to build

and run the full regression suite against an existing installation.

A second ESMF source tree is used to run full regression tests against an existing ESMF installation. To support

this, the second source tree must be of the exact same version as the ESMF installation to be tested. The two critical

environment variables used are ESMF_TESTESMFMKFILE, and ESMFMKFILE. The following bullets outline the

procedure:

• Check out the same version of ESMF as the installation to be validated.

• Change into the root directory of the checked out directory tree, and set the ESMF_DIR environment variable

to the current working directory.

• Set the ESMFMKFILE environment variable to point to the esmf.mk file of the installation to be validated. If

the ESMF installation is available via the module command, ESMFMKFILE will typically be set when loading

the module.

• Set the ESMF_TESTESMFMKFILE environment variable to ON.

• Set the ESMF_COMPILER, ESMF_COMM, and ESMF_BOPT environment variables to match the values from

the esmf.mk file.

• Make sure the build environment is set up properly to match the ESMF installation to be validated. On systems

using the module command, this means loading the correct modules.

At this point all of the test targets discussed in sections 11.1 and 11.2 are available. The build targets use the test and

example sources under the local (secondary) source tree, but compile and link against the ESMF library pointed to by

ESMFMKFILE. A fully functional installation is expected to pass all regression tests.

61

12 Architectural Overview

The ESMF architecture is characterized by the layering strategy shown in Figure 1. User code components that

implement the science portions of an application, for example a sea ice or land model, are sandwiched between two

layers. The upper layer is denoted the superstructure layer and the lower layer the infrastructure layer. The role of

the superstructure layer is to provide a shell which encompasses user code and provides a context for interconnecting

input and output data streams between components. The key elements of the superstructure are described in Section

12.2. These elements include classes that wrap user code, ensuring that all components present consistent interfaces.

The infrastructure layer provides a foundation that developers of science components can use to speed construction

and to ensure consistent, guaranteed behavior. The elements of the infrastructure include constructs to support parallel

processing with data types tailored to Earth science applications, specialized libraries to support consistent time and

calendar management and performance, error handling and scalable I/O tools. The infrastructure layer is described

in Section 12.3. A hierarchical combination of superstructure, user code components, and infrastructure are joined

together to form an ESMF application.

12.1 Key Concepts

The ESMF architecture and programming paradigm are based upon five key concepts: modularity, flexibility, hierar-

chical organization, communication within components, and a uniform communication API.

12.1.1 Modularity

The ESMF design is based upon modular Components. There are two types of Components, one of which represents

models (Gridded Components) and one which represents couplers (Coupler Components). Data are always passed

between Components using a data structure called a State, which can store Fields, FieldBundles of Fields, Arrays,

and other States. A Gridded Component stores no information about the internals of the Gridded Components that

it interacts with; this information is passed in through the argument lists of the initialize, run, and finalize methods.

The information that is passed in through the argument list can be a State from another Gridded Component, or it can

be a function pointer that performs a computation or communication on a State. These function pointers are called

Transforms, and they are available as AttachableMethods created by Coupler Components. They are called inside the

Gridded Component they are passed into. Although Transforms add some complexity to the framework (and their

use is not required), they are what will enable ESMF to accommodate virtually any model of communication between

Components.

Modularity means that an ESMF component stores nothing about the internals of other components. This

allows components to be used more easily in multiple contexts.

12.1.2 Flexibility

The ESMF does not dictate how models should be coupled; it simply provides tools for creating couplers. For ex-

ample, both a hub-and-spokes type coupling strategy and pairwise strategies are supported. The ESMF also allows

model communications to occur mid-timestep, if desired. Sequential, concurrent, and mixed modes of execution are

supported.

The ESMF does not impose restrictions on how data flows through an application. This accommodates scientific

innovation - if you want your atmospheric model to communicate with your sea ice model mid-timestep, ESMF

will not stop you.

62

12.1.3 Hierarchical organization

ESMF allows applications to be composed hierarchically. For example, physics and dynamics modules can be defined

as separate Gridded Components, coupled together with a Coupler Component, and all of these nested within a single

atmospheric Gridded Component. The atmospheric Gridded Component can be run standalone, or can be included in

a larger climate or data assimilation application. See Figure 2 for an illustrative example.

The data structure that enables scalability in ESMF is the derived type Gridded Component. Fortran alone does not

allow you to create generic components - you’d have to create derived types for PhysComp, and DynComp, and

PhysDynCouplerComp, and AtmComp. In ESMF, these are always of type GridComp or CplComp, so they can

be called by the same drivers (whether that driver is a standard ESMF driver or another model), and use the same

methods without having to overload them with many specific derived types. It is the same idea when you want to

support different implementations of the same component, like multiple dynamics.

The ESMF defines a hierarchical, scalable architecture that is natural for organizing very complex applications,

and for allowing exchangeable Components.

12.1.4 Communication within Components

Communication in ESMF always occurs within a Component. It can occur internal to a Gridded Component, and have

nothing to do with interactions with other Components (setting aside synchronization issues), or it can occur within a

Coupler Component or a transform generated by a Coupler Component. A result of the rule that all communication

happens within a Component is that Coupler Components must always be defined on the union of all the Components

that they couple together. Models can choose to use whatever mechanism they want for intra-model communications.

The point is that although the ESMF defines some simple rules for communication, the communication mecha-

nism that the framework uses is not hardwired into its architecture - the sends and receives or puts and gets are

enclosed within Gridded Components, Coupler Components and Transforms. The intent is to accommodate

multiple models of communication and technical innovations.

12.1.5 Uniform communication API

ESMF has a single API for shared and distributed memory that, unlike MPI, accounts for NUMA architectures and

does not treat all processes as being identical. It is possible for users to set ESMF communications to a strictly message

passing mode and put in their own OpenMP commands.

The goal is to create a programming paradigm that is performance sensitive to the architecture beneath it

without being discouragingly complicated.

12.2 Superstructure

The ESMF superstructure layer in a unifying context within which user components are interconnected. Classes called

Gridded Components, Coupler Components, and States are used within the superstructure to achieve this flexibility.

12.2.1 Import and export State classes

User code components under ESMF use special interface objects for Component to Component data exchanges. These

objects are of type import State and export State. These special types support a variety of methods that allow user code

components to do things like fill an export State object with data to be shared with other components or query an

63

Figure 2: A typical building block for an ESMF application consists of a parent Gridded Component, two or more

child Gridded Components, and a Coupler Component. The parent Gridded Component is called by an application

driver. All ESMF Components have initialize, run, and finalize methods. The diagram shows that when the application

driver calls initialize on a parent Gridded Component, the call cascades down to all of its children, so that the result is

that the entire “tree” of Components is initialized. The run and finalize methods work the same way. In this example a

hurricane simulation is built from ocean and atmosphere Gridded Components. The data exchange between the ocean

and atmosphere is handled by an ocean-atmosphere Coupler Component. Since the whole hurricane simulation is a

Gridded Component, it could be easily be treated as a child and coupled to another Gridded Component, rather than

being driven directly by the application driver. A similar diagram could be drawn for an atmospheric model containing

physics and dynamics components, as described in Section 12.1.3.

Child
GridComp
 “Atmosphere”

Parent
GridComp
 “Hurricane Model”

Finalize

Child
GridComp
 “Ocean”

Finalize

Child
CplComp
 “Atm-Ocean Coupler”

Finalize

Call Initialize
 Call Finalize
Call Run

Initialize
 Run
 Finalize

Initialize

Initialize

Initialize

Run

Run

Run

AppDriver
 (“Main”)

Call Initialize
 Call Finalize
Call Run

64

import State object to determine its contents. In keeping with the overall requirements for high-performance it is

permitted for import State and export State contents to use references or pointers to Component data, so that costly

data copies of potentially large data structures can be avoided where possible. The content of an import State and an

export State can be made self-describing.

12.2.2 Interface standards

The import State and export State abstractions are designed to be flexible enough so that ESMF does not need to

mandate a single format for fields. For example, ESMF does not prescribe the units of quantities exported or imported.

However, ESMF does provide mechanisms to describe units, memory layout, and grid coordinates. This allows the

ESMF software to support a range of different policies for physical fields. The interoperability experiments that we

are using to demonstrate ESMF make use of the emerging CF conventions [1] for describing physical fields. This is a

policy choice for that set of experiments. The ESMF software itself can support arbitrary conventions for labeling and

characterizing the contents of States.

12.2.3 Gridded Component class

The Gridded Component class describes a user component that takes in one import State and produces one export

State. Examples of Gridded Components are major Earth system model components such as land surface models,

ocean models, atmospheric models and sea ice models. Components used for linear algebra manipulations in a state

estimation or data assimilation optimization procedure are also created as Gridded Components. In general the fields

within an import State and export State of a Gridded Component will use the same discrete grid.

12.2.4 Coupler Component class

The other top-level Component class supported in the ESMF architecture is a Coupler Component. This class is used

for Components that take one or more import States as input and map them through spatial and temporal interpolation

or extrapolation onto one or more output export States. In a Coupler Component it is often the case that the export

State(s) is on a different discrete grid to that of the import State(s). For example, in a coupled ocean-atmosphere

simulation a Coupler Component might be used to map a set of sea-surface fields in an ocean model to appropriate

planetary boundary layer fields in an atmospheric model.

12.2.5 Flexible data and control flow

Import States, export States, Gridded Components and Coupler Components can be arrayed flexibly within a super-

structure layer. Using these constructs, it is possible to configure a set of Components with multiple pairwise Coupler

Components, Figure 4. It is also possible to configure a set of concurrently executing Gridded Components joined

through a single Coupler Component of the style shown in Figure 3.

The set of superstructure abstractions allows flexible data flow and control between components. However, compo-

nents will often use different discrete grids, and time-stepping components may march forward with different time

intervals. In a parallel compute environment different components may be distributed in a different manner on the

underlying compute resources. The ESMF infrastructure layer provides elements to manage this complexity.

65

Figure 3: ESMF supports configurations with a single central Coupler Component. In this case inputs from all Gridded

Components are transferred and regridded through the central coupler.

Ocean

SeaIce

Land
 Coupler

Atmosphere

DATA
 DATA

D

A

T

A

D

A

T

A

Figure 4: ESMF also supports configurations with multiple point to point Coupler Components. These take inputs

from one Gridded Component and transfer and regrid the data before passing it to another Gridded Component.

This schematic shows a flow of data between two Coupler Components that connect three Gridded Components: an

atmosphere model with a land model, and the same atmosphere model with a data assimilation system.

Land

AtmLandCoupler

Atmosphere

AtmAssimCoupler

D

A

T

A

 D

A

T
A

D

A

T

A

 D

A

T
A

DataAssim

66

Figure 5: Schematic showing the coupling of components that use different discrete Grids and different time-stepping.

In this example, Component NCAR Atmosphere might use a spectral Grid based on spherical harmonics, Compo-

nent GFDL Ocean might use a latitude-longitude Grid but with a patched decomposition that does not include land

masses, and Component NSIPP Land might use a m osaic-based Grid for representing vegetation patchiness and a

catchment area based Grid for river routings. The ESMF infrastructure layer contains tools to help develop software

for coupling between Components on different Grids, mapping between Components with different distributions in

a multi-processor compute environment and synchronizing events between Components with different time-stepping

intervals and algorithms.

NCAR

Atmosphere

GFDL

Ocean

NSIPP

Land

12.3 Infrastructure

Figure 5 illustrates three Gridded Components, each with a different Grids, being coupled together. In order to achieve

this coupling several steps beyond defining import State and export State objects to act as data conduits are required.

Coupler Components are needed that can interpolate between the different Grids. The necessary transformations may

also involve mapping between different units and/or memory layout conventions for the Fields that pass between

Components. In a parallel compute environment the Coupler Components may also be required to map between

different domain decompositions. In order to advance in time correctly the separate Gridded Components must have

compatible notions of time. Approaches to parallelism within the Gridded Components must also be compatible.

The Infrastructure layer contains a set of classes that address these issues and assist in managing overall system

complexity.

12.3.1 FieldBundle, Field and Array classes

FieldBundle, Field and Array classes contain data together with descriptive physical and computational attribute infor-

mation. The physical attributes include information that describes the units of the data. The computational attributes

include information on the layout in memory of the field data. The Field class is primarily geared toward structured

data. A comparable class, called Location Stream, provides a self-describing container for unstructured observational

data streams.

67

12.3.2 Grid class

The Grid class is an extensible class that holds discrete grid information. It has subtypes that allow it to serve as a

container for the full range of different physical grids that might arise in a coupled system. In the example in figure 5

objects of type Grid would hold grid information for each of the spectral grid, the latitude-longitude grid, the mosaic

grid and the catchment grid.

The Grid class is also used to represent the decomposition of a data structure into subdomains, typically for parallel

processing purposes. The class is designed to support a generalized “ghosting” for tiled decompositions of finite

difference, finite volume and finite element codes.

12.3.3 Time and Calendar management

To support synchronization between Components, several time and calendar management classes are provided. These

capabilities are provided in the Time, Time Interval, Calendar, Clock, and Alarm classes. These classes allow Gridded

and Coupler Component processing to be latched to a common controlling Clock, and to schedule notification of

regular events, such as a coupling intervals, and unique events.

12.3.4 Config resource file manager

The Config class is a utility for accessing configuration files that are in ASCII format. This utility enables configuration

files to be prepared using more flexible formatting than Fortran namelists - for example, it permits the input of tables

of data.

12.3.5 DELayout and virtual machine

To provide a mechanism for ensuring performance portability, ESMF defines DELayout and virtual machine (VM)

classes. These classes provide a set of high-level and platform independent interfaces to performance critical parallel

processing communication routines. These routines can be tuned to specific platforms to ensure optimal parallel

performance on many platforms.

12.3.6 Logging and error handling

The LogErr class is designed to aid in managing the complexity of multi-Component applications. It provides ESMF

with a unified mechanism for managing logs and error reporting.

12.3.7 File input and output

The infrastructure layer will define a set of IO classes for storing and retrieving Array, Field, and Grid information to

and from persistent storage.

13 How to Adapt Applications for ESMF

In this section we describe how to bring existing applications into the framework.

68

13.1 Individual Components

• Decide what parts will become Gridded Components

A Gridded Component is a self-contained piece of code which will be initialized, will be called once or many

times to run, and then will be finalized. It will be expected to either take in data from other components/models,

produce data, or both.

Generally a computational model like an ocean or atmosphere model will map either to a single component or

to a set of multiple nested components.

• Decide what data is produced

A component provides data to other components using an ESMF State object. A component should fill the State

object with a description of all possible values that it can export. Generally, a piece of code external to the

component (the AppDriver, or a parent component) will be responsible for marking which of these items are

actually going to be needed. Then the component can choose to either produce all possible data items (simpler

but less efficient) or only produce the data items marked as being needed. The component should consult the

CF data naming conventions when it is listing what data it can produce.

• Decide what data is needed

A component gets data from other components using an ESMF State object. The application developer must

figure out how to get any required fields from other components in the application.

• Make the data blocks private

A component should communicate to other components only through the framework. All global data items

should be private to Fortran modules, and ideally should be isolated to a single derived type which is allocated

at run time.

• Divide the code up into start/middle/end phases

A component needs to provide 3 routines which handle initialization, running, and finalization. (For codes

which have multiple phases of initialize, run, and finalize it is possible to have multiple initialize, run, and

finalize routines.)

The initialize routine needs to allocate space, initialize data items, boundary conditions, and do whatever else is

necessary in order to prepare the component to run.

For a sequential application in which all components are on the same set of processors, the run phase will be

called multiple times. Each time the model is expected to take in any new data from other models, do its com-

putation, and produce data needed by other components. A concurrent model, in which different components

are run on different processors, may execute the same way. Alternatively, it may have its run routine called only

once and may use different parts of the framework to arrange data exchange with other models. This feature is

not yet implemented in ESMF.

The finalize routine needs to release space, write out results, close open files, and generally close down the

computation gracefully.

• Make a "Set Services" subroutine

Components need to provide only a single externally visible entry point. It will be called at start time, and its

job is to register with the framework which routines satisfy the initialize, run, and finalize requirements. If it has

a single derived type that holds its private data, that can be registered too.

• Create ESMF Fields and FieldBundles for holding data

An ESMF State object is fundamentally an annotated list of other ESMF items, most often expected to be

ESMF FieldBundles (groups of Fields on the same grid). Other things which can be placed in a State object are

Fields, Arrays (raw data with no gridding/coordinate information) and other States (generally used by coupling

69

http://cf-pcmdi.llnl.gov/

code). Any data which is going to be received from other components or sent to other components needs to be

represented as an ESMF object.

To create an ESMF Field the code must create an ESMF Array object to contain the data values, and usually an

ESMF Grid object to describe the computational grid where the values are located. If this is an observational

data stream the locations of the data values will be held in an ESMF Location Stream object instead of a Grid.

• Be able to read an ESMF clock

During the execution of the run routine, information about time is transferred between components through

ESMF Clocks. The component needs to be able to at least query a Clock for the current time using framework

methods.

• Decide how much of the lower level infrastructure to use

The ESMF framework provides a rich set of time management functions, data management and query functions,

and other utility routines which help to insulate the user’s code from the differences in hardware architectures,

system software, and runtime environments. It is up to the user to select which parts of these functions they

choose to use.

13.2 Full Application

• Decide on which components to use

Select from the set of ESMF components available.

• Understand the data flow in order to customize a Coupler Component

Examine what data is produced by each component and what data is needed by each component. The role of

Coupler Components in the ESMF is to set up any necessary regridding and data conversions to match output

data from one component to input data in another.

• Write or adapt a Coupler Component

Decide on a strategy for how to do the coupling. There can be a single coupler for the application or multiple

couplers. Single couplers follow a "hub and spoke" model. Multiple couplers can couple between subsets of

the components, and can be written to couple either only one-way (e.g. output of component A into input of

component B), or two-way (both A to B and B to A).

The coupler must understand States, Fields, FieldBundles, Grids, and Arrays and ESMF execution/environment

objects such as DELayouts.

• Use or adapt a main program

The main program can be a copy of a driver found in any of the system_tests sub-directories. The cus-

tomization needed is to use the correct Component module files, to gain access to the SetServices routines.

Although ESMF provides example source code for the main program, it is not considered part of the framework

and can be changed by the user as needed.

The final thing the main program must do is call ESMF_Finalize(). This will close down the framework

and release any associated resources.

The main program is responsible for creating a top-level Gridded Component, which in turn creates other Grid-

ded and Coupler Components. We encourage this hierarchical design because it aids in extensibility - the top

level Gridded Component can be nested in another larger application. The top-level component contains the

main time loop and is responsible for calling the SetServices entry point for each child component it cre-

ates.

70

14 Glossary

This glossary defines terms used in Earth system modeling to describe parallel computer architectures, grids and grid

decompositions, and numerical and computational methods.

360-day calendar A calendar in which every one of twelve months has thirty days. See also Calendar,

no-leap calendar.

Accumulator A facility for collecting and averaging data values. Generally accumulators are associated with tempo-

ral averaging, although they might be associated with other weighted averaging operations. ESMF does not yet

have accumulators.

Application Programming Interface (API) API refers to the set of routines and types in a software package that are

available to its users. It doesn’t include private or internal routines or types.

Alarm Like a real alarm clock, the ESMF Alarm class notifies the user of an event that occurs at a particular time (or

set of times). In order to determine whether it is "ringing", an ESMF Alarm is “read” by an explicit application

action. An Alarm is associated with a particular Clock.

Application A coherent computational entity run as a single executable or set of communicating executables. It

typically consists of a set of interacting components. See also component.

Array An ESMF class that represents a multi-dimensional data array. Unlike a native Fortran or C++ array, an ESMF

Array can store information about halo points. See also halo.

Background grid A background grid associates each point in an observational data stream (Location Stream)

with a location on a grid. A single grid cell may contain zero or more Location Stream points. See also

Location Stream, cell.

BUFR Binary Universal Form of Representation. This is a World Meteorological Organization data format. See

BUFR links.

FieldBundle The ESMF FieldBundle class represents a set of fields that are associated with the same physical grid

and are distributed in the same fashion across the same physical axes. Fields within a FieldBundle may be

staggered differently and may have different (non-distributed) dimensions. See also Field, Packed FieldBundle,

Loose FieldBundle.

Calendar The Calendar is an ESMF class that stores a representation of a particular calendar type, such as Gregorian.

See also specific calendar types such as 360-day and no-leap.

Cell A physical location that is specified by both its extent (vertices) and nominal central location, and is associated

with a single integer index value or a set of integer index values (e.g. (i) for 1-d, (i,j) for 2-d, (i,j,k) for 3d). See

also index.

CF Conventions Climate and Forecast Conventions. These are emerging conventions for expressing Earth science

metadata. See the CF home page.

Change Review Board (CRB) The Change Review Board is the ESMF management body that sets project schedules

and priorities. Its Terms of Reference are in the ESMF Project Plan.

Clock Clock is an ESMF class that tracks the passage of time and reports the current time instant. An ESMF Clock

is stepped forward in increments of a time step, and can be associated with one or more Alarms. See also Time,

Time Interval, Alarm.

71

http://rda.ucar.edu/docs/formats/bufr/
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/
http://www.earthsystemmodeling.org/management/

Component The ESMF Component class represents large-scale computational entities associated with a par-

ticular physical process or computational function, such as a land model. Currently ESMF supports

Gridded Component and Coupler Component classes. Components may be generic or user-supplied.

Computational domain For a given DE, the data points that have unique global indices and are updated by the DE.

See also exclusive domain, total domain, halo.

Computational resource Something that appears as a physical or virtual computer resource. Example of computa-

tional resources are a CPU, a network connection, a communication API, a protocol, a particular network fabric

or a piece of computer memory.

Concurrent execution Concurrent execution of model components occurs when two or more components, whether

in the same or different executables, run simultaneously. See also Sequential execution.

Congruent If all Fields in a FieldBundle contain the same data type, rank, shape, and relative locations, the Field-

Bundle is said to be congruent.

Coupler Component An ESMF Component that includes all data and actions needed to enable communication be-

tween two or more Gridded Components. See also component, Gridded Component.

Curvilinear grid A curvilinear grid is a logically rectangular grid in which coordinates in physical space must be

specified by giving the explicit coordinates for each point. Curvilinear grids are often uniform or rectilinear grids

that have been warped, for example in order to place a pole over land points so it does not affect the computations

performed on an ocean model grid. See also logically rectangular grid, Uniform grid, Rectilinear grid.

Data dependency The property of a computational operator that defines the data indices required to perform the

computation at a point.

Data parallel The quality of an application that allows roughly the same calculation to be performed by all processors

at the same time on the same data set, which is partitioned among multiple memory locations. Single compo-

nents that do not contain nested components are often data parallel. See also task parallel, SPMD, MPMD.

Data transpose Rearrangement of data arrays that share the same global domain.

Day of year The day number in the calendar year. January 1 is day 1 of the year. Day of year expressed in a floating

point format is used to express the day number plus the time of day. For example, assuming a Gregorian

calendar:

date day of year

10 January 2000, 6Z 10.25

31 December 2000, 18Z 366.75

DE Short for Decomposition Element.

DELayout DELayout is the ESMF class that defines the topology of a set of DEs and specifies how the DEs are

assigned to PETs in an ESMF Virtual Machine.

Decomposition Element (DE) A DE is the smallest unit of decomposition of a computational task. DEs are virtual

units, not necessarily having a 1-to-1 correspondence to the Persistent Execution Threads (PETs) of a VM or the

physical Processing Elements (PEs) in the underlying physical machine. Consequently there are no restrictions

on the number of DEs that can be created. The application writer may chose the number of DEs to best match

the computational problem and the employed algorithm. A DELayout assigns a topology to Decomposition

Elements. See also DELayout.

Deep object In an environment in which the calling and implementation language of a library are different, deep ob-

jects are defined as those whose memory is allocated by the implementation language. See also shallow object.

72

Distributed Grid DistGrid is the ESMF class that defines the decomposition of a Grid’s global index space across a

DELayout. DistGrid objects are contained in an ESMF Grid. See also Grid, DELayout.

Distribution The function that expresses the relationship between the indices in a Distributed Grid and the elements

in a DELayout. See also Distributed Grid, DELayout.

Domain decomposition The act of grid distribution: creating a DistGrid, and associating grid points with the Dist-

Grid. The dimensionality of the domain decomposition is the same as the dimensionality of the associated

DistGrid.

Exact The word exact is used to denote entities, such as time instants and time intervals, for which truncation-free

arithmetic is required.

Exchange grid A grid whose vertices are formed by the intersection of the vertices of two overlying grids. Each cell

in the exchange grid overlies exactly one cell in each grid of the exchange. See also grid, cell.

Exchange Packets Exchange Packets are a private ESMF class that contains data in an optimal form for data transfers.

Exclusive domain For a given DE, the set of data points that are not replicated on any other DE. See also total domain,

computational domain, halo.

Executable A program that is under independent control by the operating system.

Export State The data and metadata that a component can make available for exchange with other components. This

may be data at a physical boundary (e.g land-atmosphere interface) or in other cases, it might be the entire model

state. See also State, import State.

Field The ESMF Field class represents a tangible or derived quantity defined within a continuous region of space.

The Field class includes the physical grid associated with the quantity and a decomposition that specifies how

data associated with points in the physical grid are distributed in computer memory and/or how computational

work is divided among threads. A Field also includes a specification of gridpoint staggering and any metadata

necessary for a full description of its data. See also Grid.

Framework We use the term framework to refer to a structured collection of software building blocks that can be

used and customized to develop components, assemble them into an application, and run the application.

Generic component A generic component is one supplied by the framework. The user is not expected to customize

or otherwise modify it. ESMF does not currently contain any generic components. See also user component,

component.

Generic transform A generic transform is an operation supplied by the framework, for example, a method that

converts gridded data from one supported grid and/or decomposition to another using a specified technique. See

also user transform.

Global domain A global domain refers to the full extent of a DELayout or Grid.

Global reduction Reduction operations (sum, max, min, etc.) that condense data distributed over a global domain.

See also global broadcast.

Global broadcast Scatter operations on data distributed over a global domain. See also global reduction.

Gregorian The Gregorian calendar is the most widely used calendar in the world. The calendar’s zeroth year is at

the birth of Jesus Christ. Years after the origin (anno Domini, or AD) are positive, and before (Before Christ, or

BC) are negative. Several corrections (leap year, 100 year, 400 year) are necessary to keep the calendar aligned

with solar cycles. See also Calendar.

73

GRIB The GRid in Binary Data format from the World Meteorological Organization. This format is frequently used

by operational weather centers. See the GRIB home page, and GRIB2 reference guide.

Grid The discrete division of space associated with a particular coordinate system. The ESMF Grid class contains

coordinate, domain decomposition, and memory organization information required to manipulate Fields, as well

as to create and execute Grid transforms. See also Distributed Grid, DELayout.

Grid staggering A descriptor of relative locations of scalar and vector data on a structured grid. On different stag-

gered grids, vector data may lie at cell faces or vertices, while scalar data may lie in the interior.

Grid topology Description of data connectivities for a grid.

Grid union The formation of a new grid by taking the union of the vertices of two input grids. See also Grid.

Gridded Component An ESMF class that represents a component that is associated with one or more grids. No

requirements may be placed on the physical content of a Gridded Component’s data or on the nature of its

computations. See also component, Coupler Component.

Halo For a given DE, a halo is a set of data points from the computational domains of neighboring DEs that are repli-

cated locally for computational convenience. A halo can be defined as all the data points in a DE’s total domain

excluding those in its computational domain. See also computational domain, total domain, exclusive domain.

Halo update A halo update operation involves synchronization of the values of some or all halo points with the

current values of those points on other DEs. See also halo.

Import State The data and metadata that a component requires from other components in order to run. See also State,

export State.

Index An integer value associated with a set of coordinates.

Index space The space implied by a set of indices. An index space has a defined dimensionality and connectivity.

Index space location A location within an index space. An index space location may be fractional. See also

physical location.

Instantiate To create an actual instance of a software class. For example, each variable of derived type Field in an

ESMF Fortran application is an instance of the Field class.

Interface Used generally to refer to a set of operations that characterize the behavior of a class or a component. Also

used to refer to the name and argument list of a particular method.

Joint Milestone Codeset(JMC) Joint Milestone Codeset. This is the set of climate, weather and data assimilation

applications used as ESMF testbeds during the initial NASA-funded phase of ESMF development.

Joint Specification Team(JST) The JST is the body of developers and users who collaborate to create the ESMF

software. The main form of communication for the JST is the weekly telecon. Terms of Reference are in the

ESMF Project Plan.

LocalArray A LocalArray is the portion of an ESMF Array that resides on a particular DE. See also Array.

LocalTile A LocalTile is the portion of a grid Tile that resides on a particular DE. See also Tile.

Location Stream An ESMF class that represents a list of locations with no assumed relationship between these

locations. The elements of a Location Stream are not assumed to share the same metadata. Location Streams

are not yet implemented. See also background grid.

74

http://www.wmo.ch/pages/prog/www/WDM/Guides/Guide-binary-2.html
http://www.wmo.int/pages/prog/www/WMOCodes/Guides/GRIB/GRIB2_062006.pdf
http://www.earthsystemmodeling.org/management/

Logically rectangular grid A grid in which a set of coordinates (x,y,z, ...) in physical space can be mapped one-to-

one to a set of regularly spaced points (i,j,k, ...) in a rectangular logical space, preserving proximate relation-

ships. See also Grid.

Loose FieldBundle A loose FieldBundle is an ESMF FieldBundle object that contains fields whose data is not con-

tiguous in memory. See also FieldBundle, packed FieldBundle.

Machine model A generic representation of the computing platform architecture.

Mask A data field marking a span within a larger data field.

Memory domain The portion of memory associated with the data on a given DE. The memory domain is always at

least as large as the total domain. See also total domain.

Mosaic grid A mosaic grid is composed of multiple logically rectangular grid tiles that are connected at their edges,

for example, a cubed sphere grid. See also grid tile.

MPMD Multiple Program Multiple Datastream. Multiple executables, any of which could itself be an SPMD exe-

cutable, executing independently within an application. See also SPMD.

Namelist An I/O feature supported by Fortran that defines a structured syntax for creating text files of initial variable

settings and defines language features for compactly reading the files. The syntax for Namelist files can be found

in most Fortran manuals and tutorial texts.

NetCDF Network Common Data Form. This is a popular I/O library and data format in the Earth sciences. See

NetCDF home page.

Node A node is a set of computational resources that is typically located in close proximity on a computing platform

and that is associated with a single shared memory buffer.

No-leap calendar In this calendar every year uses the same months and days per month as in a non-leap year of a

Gregorian calendar. See also Calendar, 360-day calendar.

Packed FieldBundle A packed FieldBundle is an ESMF FieldBundle object that contains a data buffer with field data

arranged contiguously in memory. See also FieldBundle, loose FieldBundle.

Parallel execution The term parallel execution refers to the execution of a software application on more than one PE.

See also serial.

PE Short for Processing Element.

PET Short for Persistent Execution Thread.

Persistent Execution Thread (PET) Provides a path for executing an instruction sequence. A PET has a lifetime at

least as long as the associated data objects. The PET is a key abstraction used in the ESMF Virtual Machine.

Physical location A point in physical space to which a data point pertains. See also index space location.

Platform The processor hardware, operating system, compiler and parallel library that together form a unique com-

pilation target.

Processing Element (PE) A Processing Element (PE) is the smallest physical processing unit available on a particular

hardware platform.

Rectilinear grid A rectilinear grid is a logically rectangular grid in which the coordinates in physical space can be

fully specified by the spacing of grid points along each grid axis. The gridpoints are located where the coordinate

values intersect. The spacing along each axis may vary. See also logically rectangular grid, Uniform grid,

Curvilinear grid.

75

http://www.unidata.ucar.edu/software/netcdf/

Regrid weight generation methods and applications The collective term for all ESMF interfaces that

compute regridding weights. This covers Fortran methods: ESMF_FieldRegridStore(),

ESMF_FieldBundleRegridStore(), ESMF_RegridWeightGen(), and the command line ap-

plication: ESMF_RegridWeightGen.

Scheduler An operating system component that assigns system resources (processors, memory, CPU time, I/O chan-

nels, etc.) to executables.

Search Search refers to the process of determining which processors must exchange data (and how much) when

regridding between decomposed grids. See also sweep.

Sequential execution Sequential execution of model components describes the case in which one component waits

for another to finish before it begins to run. Components executing sequentially may be in the same or different

executables and may have coincident or non-overlapping memory distributions. See Concurrent execution.

Serial Execution The term serial execution refers to the execution of a software application on only one PET. See

also parallel execution.

Shallow object In an environment in which the calling and implementation language of a library are different, shallow

objects are defined as those whose memory is allocated by the calling language. See also deep object.

Span The physical extent associated with a grid.

SPMD Single Program Multiple Datastream. A single executable, possibly with many components (representing for

example the atmosphere, the ocean, land surface) executing serially or concurrently. See also MPMD.

State The ESMF State class may contain Arrays, FieldBundles, Fields, or other States. It is used to transfer data

between components. See also import State, export State.

Sweep Sweep refers to the regridding process of looping through lists of cells from one grid, hunting for interactions

with a specified point or subsegment from the other grid. The type of interaction depends on the regrid method

and is either an intersection with an identified subsegment or containment of an identified point. The limitation

of the range of cells that must be examined is also considered part of the sweep algorithm. See also search.

System time Time spent doing system tasks such as I/O or in system calls. May also include time spent running other

processes on a multiprocessor system. See also user time, wall clock time.

Task parallel The quality of an application that allows different calculations to be performed by different processors

at the same time on what are usually different data sets. Large-scale task parallelism is often associated with

multi-component applications in which each component represents a separate domain or function. Task parallel

applications may be run with components executing either sequentially or concurrently, and either in a SPMD

or MPMD mode. See also data parallel, SPMD, MPMD, sequential execution, concurrent execution.

Some grids used in Earth system modeling, such as cubed sphere grids, are most naturally represented as a set

of logically rectangular grids that are connected at their edges. Following V. Balaji [2006] we refer to each of

the logically rectangular grids in a composite grid, or mosaic grid, as a Tile. See also mosaic grid, LocalTile.

Time Time is an ESMF class that is made up of a time and date and an associated calendar. It may include a time

zone. Jan 3rd 1999, 03:30:24.56s, UTC is one example of a Time. See also Calendar.

Time Interval Time Interval is an ESMF class that represents the period between any two time instants, measured

in units, such as days, seconds, and fractions of a second. The periods 2 days and 10 seconds, 86400 and 1/3

seconds and 31104000.75 seconds are all possible values for Time Intervals. Mathematical operations such as

addition, multiplication, and subdivision can be applied to Time Intervals, and they can have negative values.

See also Time

76

Total domain For a given DE, the entirety of the data points allocated, included replicated points from neighboring

DEs. See also computational domain, exclusive domain, halo

A logically rectangular grid in which the coordinates in physical space can be completely specified by the two

sets of coordinates that define the opposing corner points of the physical span. The coordinates of each point in

physical space can be obtained by interpolating from the corner points, using the evenly spaced logical grid to

specify evenly spaced grid point locations. See also logically rectangular grid, Rectilinear grid, Curvilinear grid.

User component A component that is customized or written by the user. All ESMF components are currently user

components. See also generic component.

User time Processor time actually spent executing a PET’s code. See also system time, wall clock time.

User transform A user-supplied method that is used to extend framework capabilities beyond generic transforms.

See also generic transform.

Virtual Address Space (VAS) A term that refers to the address space in which the computer memory is represented

and becomes accessible to an executing PET.

VM Short for Virtual Machine.

Virtual Machine (VM) An ESMF class that abstracts hardware and operating system details. The VM’s responsi-

bilities are resource management and topological description of the underlying compute resources in terms of

PETs. In addition the VM provides a transparent, low level communication API.

Wall clock time Elapsed real-world time (i.e. difference between start time minus stop time). See also system time,

user time.

References

[1] Eaton, B., J. Gregory, B. Drach, K. Taylor, and S. Hankin. NetCDF Climate and Forecast (CF) Metadata Conven-

tion. http://cfconventions.org/Data/cf-conventions/cf-conventions-1.6/build/cf-conventions.html, last accessed on

Nov 27, 2015.

77

	What is the Earth System Modeling Framework?
	The ESMF User's Guide
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	Quick Start
	Downloading ESMF
	Directory Structure
	Building ESMF
	Environment variables
	GNU make
	make info
	Building makefile targets
	Testing makefile targets
	Building and using bundled ESMF Command Line Tools

	Building ESMF with Spack
	Creating New Spack environment
	Finding Available Compilers and External Packages
	Installing ESMF Spack Package and Its Dependencies

	Compiling and Linking User Code against an ESMF Installation
	esmf.mk method
	CMake method

	Debugging of ESMF User Applications
	Using Bundled ESMF Command Line Tools
	Building and Installing ESMF
	ESMF Download Options
	Acquiring Development Snapshots
	System Specific Information
	General Requirements
	Intel Compiler (Classic and oneAPI)
	MacOS Darwin

	Third Party Libraries
	LAPACK
	NetCDF
	Parallel-NetCDF
	PIO
	Accelerator Software Stacks
	XERCES
	yaml-cpp
	MOAB
	NUMA
	NVML

	ESMF Environment Variables
	Supported Platforms
	Building the ESMF Library
	Building the ESMF Documentation
	Installing the ESMF

	Porting ESMF
	The ESMF Build System
	General structure
	Build configuration
	Source code configuration

	Porting ESMF to New Platforms
	Customizing the build_rules.mk fragment
	Customizing ESMC_Conf.h and ESMF_Conf.inc

	Shared Object Libraries

	Validating an ESMF Build
	Running ESMF Self-Tests
	Setting up ESMF to run test suite applications
	Running ESMF unit tests
	Running ESMF system tests

	Running ESMF Examples
	Example source code
	Building and running examples

	Validating an existing ESMF installation

	Architectural Overview
	Key Concepts
	Modularity
	Flexibility
	Hierarchical organization
	Communication within Components
	Uniform communication API

	Superstructure
	Import and export State classes
	Interface standards
	Gridded Component class
	Coupler Component class
	Flexible data and control flow

	Infrastructure
	FieldBundle, Field and Array classes
	Grid class
	Time and Calendar management
	Config resource file manager
	DELayout and virtual machine
	Logging and error handling
	File input and output

	How to Adapt Applications for ESMF
	Individual Components
	Full Application

	Glossary
	References

