National Unified Operational Prediction Capability

Building a NUOPC Model

ESMF 8.9.1

Content Standards Committee (CSC) Members

January 6, 2026

NUOPC
CMA/CSC Committee
http://www.weather.gov/nuopc

Contents

2

2

2

4

4

4

4

5

o y 6

nsta e Targe achind 6

B2 Prepare Your Model Codd o o 7
‘ i 7
8

8

10

10

10

11

11

11

14

14

14

4.3 __Checking Return Coded . . . o 16
iLhmahnghas.e_-AdeEmdd 16
4.5 Initialize Phase - Realize Fieldd o o o oo oo 17
[.6_Model Advance Specialization s oo 19

1 Overview

The National Unified Operational Prediction Capability] (NUOPC) is a strategic initiative to fundamentally advance
the nation’s computational weather prediction systems and improve forecast models used by National Weather Service,
Air Force and Navy meteorologists, mission planners, and decision makers. The NUOPC Layer is a software layer
built on top of the Earth System Modeling Framework (ESMF). ESMF is a high-performance modeling framework
that provides data structures, interfaces, and operations suited for building coupled models from a set of components.
NUOPC refines the capabilities of ESMF by providing a more precise definition of what it means for a model
to be a component and how components should interact and share data in a coupled system. The NUOPC Layer
software is designed to work with typical high-performance models in the Earth sciences domain, most of which are
written in Fortran and are based on a distributed memory model of parallelism (MPI).

The NUOPC Layer implements a set of generic components that serve as building blocks that can be assembled
together in different ways to build up a coupled modeling application. In some cases, a generic component can be
used as is, and in other cases the generic component must be specialized (customized) for a particular model or
application. Additionally, the NUOPC Layer defines a set of technical rules for how components should behave and
interact with each other. These technical rules form the backbone of component interoperability. NUOPC defines this
effective interoperability as the ability of a model component to execute without code changes in a driver that provides
the fields that it requires, and to return with informative messages if its input requirements are not met. A component
that follows the NUOPC Layer technical rules is considered to be NUOPC Layer compliant.

For brevity, throughout this document we will often use the term “NUOPC” to refer to the “NUOPC Layer software”
that is the current technical implementation of the NUOPC specification. Also, the term “NUOPC component” is
shorthand for a component that is NUOPC Layer compliant and can be used in NUOPC-based systems.

1.1 Document Roadmap

This document is a starting point for model developers and technical managers who are new to the NUOPC
Layer software and need to understand the steps involved in making an existing model codebase NUOPC Layer
compliant.

The document is divided into the following sections:

e Section [2| describes important parts of the NUOPC design that are critical for anyone planning to write code
using the NUOPC APL

e Section[3|describes the development steps involved in making your model code NUOPC Layer compliant.

e Section[] presents the code of a basic example cap, describing each part in detail.

1.2 Additional NUOPC Resources

This document is not exhaustive, but should help you navigate the process of creating a NUOPC component from your
model. As such this document is a companion to other NUOPC resources available:

e The NUOPC website is the main source of information on NUOPC, including instructions for acquiring and
using the NUOPC Layer software.

e The NUOPC Reference Manuallis the primary technical reference for the NUOPC API and includes a detailed
description of the NUOPC generic components.

http://www.nws.noaa.gov/nuopc/
http://earthsystemmodeling.org/nuopc/
http://earthsystemmodeling.org/
http://earthsystemmodeling.org/nuopc/
http://earthsystemmodeling.org/docs/release/latest/NUOPC_refdoc/

e The NUOPC Prototype Codes page and Git repository include a set of prototype applications that use the
NUOPC Layer software. These applications are architectural skeletons that represent typical configurations
of NUOPC components and provide numerous examples of using the NUOPC API.

e Cupid is a plugin for the Eclipse Integrated Development Environment that automatically generates NUOPC
Layer compliant code and checks existing source code for compliance.

o A BAMS article entitled The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
describes NUOPC and how NUOPC Layer compliant components are being used in coupled modeling systems
across U.S. agencies.

http://earthsystemmodeling.org/nuopc/#prototype-applications
https://github.com/esmf-org/nuopc-app-prototypes
https://cupid.readthedocs.io/en/latest/
https://eclipse.org/
https://www2.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00164.1

2 The Big Idea

This section should help you understand key aspects of the NUOPC Layer design that are critical for writing the code
to make your model NUOPC Layer compliant. The NUOPC Layer includes four kinds of generic components, each
with a different purpose in a coupled application. One kind of generic component is the NUOPC Model, a component
that wraps a model code (such as an atmosphere, ocean, or ice model) such that it exposes the set of interfaces defined
by the NUOPC specification. You will work primarily with the NUOPC Model generic component in order to make
your model NUOPC Layer compliant.

This documentation focuses primarily on the NUOPC Model Component. However, you should be aware that there
are four kinds of generic components implemented in the NUOPC Layer:

Model Wraps a model code, such as an atmosphere, ocean, or ice model

Connector Handles standard data transformations (e.g., redistribution or regridding) between two com-
ponents in a single direction

Mediator Contains custom coupling code (e.g., flux calculations, averaging) between Models; unlike the
Connector, a Mediator can handle data from multiple Models with data flowing in multiple ways

Driver Coordinates execution of Models, Mediators, and Connectors

2.1 Specializing Generic Components

A key design idea behind NUOPC is that a lot of code (and therefore behavior) is provided for you. This code is
provided via the four generic components included with the NUOPC library, plus some additional utility routines.
The NUOPC Model generic component implements most of the initialization and run behavior for you, but you have
to supply some key parts of the implementation that are specific to your model. The process of supplying your
custom code that completes the generic NUOPC Model component is called specialization. In other words, you
are specializing the generic component to work for your particular model. Any parts of the code that you do not
specialize are inherited from the generic component.

Those familiar with object-oriented programming will recognize the ideas of specialization and inheritance. Since the
NUOPC Layer is written in Fortran 90, which has limited support for object-oriented programming, your specialization
code is provided in Fortran subroutines which are registered with NUOPC using function pointers. NUOPC makes
callbacks into your code when required to execute the specialization code.

2.2 NUOPC Model Cap

A NUOPC Model cap is a Fortran module that contains your code that specializes the generic NUOPC Model com-
ponent for your particular model. The NUOPC Model cap serves as the interface to your model when it’s used in
NUOPC-based systems. The term ‘“‘cap” is used because it is a small software layer that sits on top of your
model, making calls into it. Typically, your model code will not make calls back into the cap. Sometimes we say just
“cap” or “NUOPC cap” because it’s quicker than saying “NUOPC Model cap.”

2.3 How Much of My Code Do I Need to Change?

The amount of code that your need to change depends on how your model is structured and the degree to which it is
already an independent component. The NUOPC cap itself does not usually require changes to your model’s internals.
Instead, the cap primarily acts as a separate software layer, and your model otherwise operates in its usual way.

However, as detailed in the section [3.2] if your model is currently embedded as a subsystem in a larger application
and cannot be built independently, you must first take steps to modularize the code and remove dependencies to other
models before beginning the NUOPC implementation.

The creation of a NUOPC cap does not mean that your model must always be run as a NUOPC component.
Existing models can retain their native modes of operation, and running your model in NUOPC mode becomes a
configuration option.

The NUOPC cap becomes a new locus of control for your model when your model is run in NUOPC mode. In other
words, it will make calls into your model code to initialize your model and step it forward in time. One result of this is
that the very top level main program of your model may not be used at all when your model is run in NUOPC mode.
This is because all models participating in a coupled NUOPC application will be controlled by a separate generic
component: the NUOPC Driver.

Putting control into a separate driver enables synchronization of all models participating in a coupled application,
allows NUOPC to control when each model component runs (and for how long), and allows NUOPC to intercept and
inject variables produced and required by your model at key parts during execution. Once you have a working NUOPC
cap (you only need to implement it once), you have an interoperable component that can be used in systems with other
NUOPC components.

2.4 How Do I Know it Works?

Validating your NUOPC cap is extremely important. The idea is to ensure that your model’s current behavior is
reproduced exactly as before, but this time with control flowing from the cap. This is why we encourage you to
generate some baseline output by running your model in its “normal” way before doing any implementation. You
will validate your cap by ensuring that when it controls your model, the same output is reproduced. In most cases the
output matches bit-for-bit so a simple file-based comparison will be sufficient.

We also provide tools to help you check whether your cap is NUOPC-compliant. NUOPC Compliance can be
evaluated using a combination of two tools, the Component Explorer and the Compliance Checker, included in
the ESMF/NUOPC software distribution. More information is provided in sections [3.8] and B.10l

3 Writing and Testing a NUOPC Cap for your Model

While there is no one right way to write the NUOPC Model cap code, the following recommended steps represent an
incremental approach to developing the cap.

1. Install ESMF and NUOPC on the Target Machine (3.1

2. Prepare Your Model Code (3.2))

3. Choose a Configuration of Your Model for Development (3.3)

4. Integrate a Cap Template into Your Codebase (3.4)

5. Modify Your Build to Generate a NUOPC Makefile Fragment (3.3)

6. Initialize Your Model from the Cap (3.6)

7. Call Your Model’s Run Subroutine from the Cap (3.7)

8. Run the Cap with a NUOPC Driver (3.8)

9. Split Up the Initialization Phases (3.9)

10. Test and Validate Your Cap (3.10)

3.1 Install ESMF and NUOPC on the Target Machine

First, you need to ensure the prerequisite software is available on the target system.

The primary prerequisite software is the NUOPC library, which is included with the ESMF distribution, and your
model, including any of its dependencies.

Acquire the latest ESMF release from GitHub:
$ git clone https://github.com/esmf-org/esmf.git —--branch main —--depth 1

Compile and install ESMF. Full installation details can be found in the ESMF User Guide. An example of the basic
procedure for one particular system is outlined below.

set environment variables for build

the actual settings depend on your platform
and the compilation options you select
export ESMF_DIR=/path/to/esmf

export ESMF_COMPILER=gfortran

export ESMF_COMM=openmpi

export ESMF_PIO=internal

export ESMF_NETCDF=split

export ESMF_NETCDF_INCLUDE=/usr/include
export ESMF_NETCDF_LIBS="-lnetcdff —-lnetcdf"
export ESMF_NETCDF_LIBPATH=/usr/lib

export ESMF_INSTALL_PREFIX=/path/to/install

WA AN AN Ay 3 S S

http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/node6.html#SECTION00064000000000000000

build

cd /path/to/esmf
gmake

gmake check
gmake install

U O Uy Uy FF

3.2 Prepare Your Model Code

Before starting a NUOPC cap implementation, your model must already be modularized such that it can be built by
itself and does not contain hard dependencies to other model components. For example, if the model targeted for
NUOPC compliance is a subsystem embedded in a larger application, the model will first need to be extracted such
that it can be built by itself as a library.

The model also needs to be roughly divided into several execution methods: initialize, run, and finalize. Each of these
methods may contain several phases. The run method should allow the model to execute a single timestep, or accept a
parameter defining the number of timesteps or a “run until” time.

Your NUOPC cap code will be cleanest if your model exposes data structures for input and output variables with clear,
well-documented naming conventions. This will simplify the process of hooking up fields in the NUOPC cap to your
model’s data structures. The NUOPC Field Dictionary uses the (Climate and Forecast conventions| for defining field
standard names, but can support field name aliases.

Finally, the model should not use the global MPI_COMM_WORLD communicator explicitly, but should accept
a communicator at some point during startup. A global search and replace can be used to replace all uses of
MPI_COMM_WORLD with a different communicator defined as a global variable in your model.

3.3 Choose a Configuration of Your Model for Development

When implementing the NUOPC interfaces for your model, you want to get into an efficient edit-compile-debug cycle.
This will require running a configuration of your model that can be used to test the NUOPC code you will write.

You should choose a configuration of your model that is simple and stable. Many models have regression test config-
urations that can be run quickly and have small output files. These configurations are typically low resolution, have
short execution times, and sometimes have idealized initial conditions. Some models can also be configured with some
of the physics options turned off to reduce the total amount of computation. More scientifically interesting or higher
resolution configurations can be used after ensuring that the NUOPC cap is working for the basic case.

Compile your model on the target system and generate baseline output for the selected configuration. This will
typically be a small set of history or restart files. We’ll use these files later to ensure that your model is reproducing
the expected output when executed through the NUOPC cap. In most cases, when your model is executed through its
NUOPC cap, the output should be bit-for-bit identical with non-NUOPC runs. (The one caveat to this is that when
your model is used in a coupled system, roundoff error may occur due to slight differences introduced when grid
interpolation is used between models.)

If your model is already using ESMF, you will need to update your build to link against ESMF version 7 or later.
Instructions for checking out this version of ESMF appear in section[3.1]

http://cfconventions.org/

3.4 Integrate a Cap Template into Your Codebase

An important question is where you will put your NUOPC cap source code. The NUOPC cap code added to a model
is minimal and is typically contained either in a single source file or a small set of files. We recommend including
the NUOPC cap code in the same code repository with the rest of your model code as this helps to ensure the
cap evolves with your code and simplifies the process of acquiring a NUOPC-compliant version of your model.
The exact right place to put the cap code is your decision and largely depends on your model’s directory structure.

Including the cap code in your model’s codebase does not imply that your model must always be run in NUOPC mode.
Instead, when the cap is complete, the NUOPC mode can be viewed as a configuration option of your model.

You need not start from scratch. Instead start with a NUOPC cap template. To acquire a cap template you can:

e use the cap template below,
e copy code from one of the NUOPC Prototype Applications or

o use the Cupid plugin for Eclipse|to generate code. Cupid automatically generates NUOPC compliant code frag-
ments for specialization points and presents NUOPC API reference documentation based on where you are in
your NUOPC cap code. Installation instructions are provided on the Cupid website, and for additional support
please email the ESMF support list.

Put the initial cap code into your model source tree. Then, modify your Makefile or build scripts so that the cap is
compiled with the rest of your model code. Unless your model is already using ESMF, you’ll need to add ESMF
compile and linking flags in order to build the cap. When ESMF is installed, a Makefile fragment named esmf.mk
is generated that contains variables that can be appended to your compile and link flags. The ESMF User Guide
explains how to use these variables in your Makefile.

3.5 Modify Your Build to Generate a NUOPC Makefile Fragment

The goal of adding a NUOPC cap to your model is so that it can be used with other NUOPC-compliant models in a
coupled system. From a technical standpoint, there are several ways that your model code can be included into a final
coupled system binary. Two common options are to link to your model statically and to link it in dynamically from a
shared library.

In either case, to simplify the process of compiling and linking against your model, your model’s build process
should produce a Makefile fragment file that defines the following six variables:

ESMF_DEP_FRONT The name of the Fortran module to be used in a USE statement, or (if it ends in
”.h”) the name of the header file to be used in an #include statement, or (if it ends in .s0”’) the name
of the shared object to be loaded at run-time.

ESMF_DEP_INCPATH The include path to find module or header files during compilation. Must be
specified as absolute path.

ESMF_DEP_CMPL_OBJS Object files that need to be considered as compile dependencies. Must be
specified with absolute path.

ESMF_DEP_LINK_OBJS Object files that need to be considered as link dependencies. Must be speci-
fied with absolute path.

ESMF_DEP_SHRD_PATH The path or list of paths to find shared libraries during link-time (and during
run-time unless overridden by LD_LIBRARY_PATH). Must be specified as absolute paths.

https://github.com/esmf-org/nuopc-app-prototypes
https://www.earthsystemcog.org/projects/cupid/
mailto:esmf_support@ucar.edu
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/node7.html

ESMF_DEP_SHRD_LIBS Shared libraries that need to be specified during link-time, and must be avail-
able during run-time. Must be specified with absolute path.

An example makefile fragment useful for statically linking against your model looks like this:

#file: abc.mk

ESMF_DEP_FRONT = ABC

ESMF_DEP_INCPATH = <absolute path to associated ABC module file>
ESMF_DEP_CMPIL_OBJS = <absolute path>/abc.o

ESMF_DEP_LINK_OBJS = <absolute path>/abc.o <absolute path>/xyz.o

ESMF_DEP_SHRD_PATH =
ESMF_DEP_SHRD_LIBS =

The variables in the makefile fragment expose a set of dependencies that the higher-level build system can use to
compile and link against your model. An easy way to generate the makefile fragment is to modify your model’s
Makefile to include a new target:

.PRECIOUS: %.o0

\

[

$.mk: %.0
@echo "# ESMF self-describing build dependency makefile fragment" > $@
@echo >> $@

@echo "ESMF_DEP_FRONT = ABC" >> 5@
@echo "ESMF_DEP_INCPATH = ‘pwd'" >> $@
@echo "ESMF_DEP_CMPIL_OBJS = ‘pwd‘/"s$< >> 5@
@echo "ESMF_DEP_LINK_OBJS = "$ (addprefix ‘pwd‘/, $(OBJS)) >> $@
@Qecho "ESMF_DEP_SHRD_PATH = " >> s@
@echo "ESMF_DEP_SHRD_LIBS = " >> 5@

abc.mk: $(OBJS)

The|Standardized Component Dependencies section of the NUOPC Reference Manual contains more details on setting
up NUOPC makefile fragments.

Finally, if your build procedure typically produces an executable, it is recommended that you add a Makefile
target (or similar build option) that produces a library instead of an executable. When used in a NUOPC system,
your model’s main program will not be used—instead, a NUOPC_Driver will be linked to your cap and it will be the
locus of control (i.e., the main program).

Makefile Target Conventions

If your model is built using Make, a common convention is to add two special targets that build your model and also
compile the NUOPC code you will write.

this target builds your model and your NUOPC cap

make nuopc

this target installs your NUOPC-compliant model to a particular directory
make nuopcinstall DESTDIR=/path/to/install

v #= A

http://www.earthsystemmodeling.org/esmf_releases/last_built/NUOPC_refdoc/node5.html

3.6 Initialize Your Model from the Cap

The cap template you placed in your source tree is not yet connected to your model. You now need to add a call into
your model’s existing initialization subroutine(s).

NUOPC defines a precise initialization sequence—i.e., a series of steps that all NUOPC components are expected
to take when starting up. A user component cap interacts with the NUOPC initialization sequence through spe-
cific specialization points. Specifically this means using the NUOPC_CompSpecialize () method during the
component’s SetServices method for each of the required specializations, and providing the necessary implemen-
tation. The NUOPC_CompSpecialize () method takes a specLabel argument to indicate the targeted special-
ization. All available specialization labels for model components are listed in the NUOPC reference manual under the
NUOPC_Model API section.

Instead of tackling the full NUOPC initialization sequence at this point in developing your cap, we recommend that
you start by adding calls in your cap’s first initialization phase to your model’s existing initialization subroutine(s).
A good place to do this is within the Advertise Fields initialization phase. This is the phase where each component
“advertises” the fields it requires and can potentially provide.

You will need to add use statements at the top if your cap to import the relevant initialization subroutines from your
model into the NUOPC cap module. The example code in section [3.11] shows where to add the call to your model’s
initialization subroutine(s).

In the next section you will add another call into your model code before attempting to execute your NUOPC cap.

3.7 Call Your Model’s Run Subroutine from the Cap

The Advance specialization point provided by the NUOPC Model generic component is the place where you will call
your model’s timestep subroutine. You should add this call now. Refer to the example code in section [3.11] below to
see where to add this call.

This call should only move the model forward a single timestep, not the full run length. If the subroutine requires
a parameter such as the timestep length or the time to stop, then these parameters can be retrieved from the cap’s
ESMF_Clock object.

If your model does not have a subroutine that takes a single timestep, you will need to create one now.

3.8 Run the Cap with a NUOPC Driver

Now you should test the basic cap you have implemented. First, build your model along with the cap code using
your model’s build script or Makefile. If you followed the procedure in section your build process should have
produced a NUOPC Makefile fragment file in addition to the compiled object files (or library).

One option for testing the cap is to run it using the NUOPC Component Explorer, a specialized NUOPC_Driver
designed to execute any NUOPC_Model. Complete instructions| for acquiring the Component Explorer and linking it
to your NUOPC cap are available.

The instructions above also describe how to turn on the NUOPC Compliance Checker while running the Component
Explorer. The Compliance Checker produces additional output in the ESMF log files that is useful for debugging.
It also produces WARNINGS in the logs if a compliance issue is identified. When running with the basic cap, you
should not necessarily expect to have all compliance issues resolved.

10

https://www.earthsystemcog.org/projects/nuopc/compliance_testing
https://www.earthsystemcog.org/projects/nuopc/compliance_test
https://www.earthsystemcog.org/projects/nuopc/compliance_testing

3.9 Split Up the Initialization Phases

Once the basic cap described above can be executed using the Component Explorer, you should modify the cap to
implement the required initialization sequence as described in the NUOPC reference manual. This includes advertising
fields with standard names and realizing fields by creating ESMF_Field objects to wrap your model variables. As
part of this process, you will need to describe your model’s grid structure using the ESMF geometric classes, e.g.,
ESMF_Grid and ESMF_Mesh.

3.10 Test and Validate Your Cap

After splitting up the initilization phases, rebuild your model and execute it again using the Component Explorer with
the Compliance Checker turned on. Ideally, you should see no compliance WARNINGS in the generated log files.

To validate that the NUOPC cap is faithfully reproducing your model’s behavior when run in non-NUOPC
mode, you should compare your model’s output when run with the NUOPC cap against a baseline run. This is
the best test to ensure that the cap is working correctly. If the NUOPC cap reproduces your baseline run, you are ready
to integrate your NUOPC Model cap into a coupled system with other NUOPC components.

3.11 Example NUOPC Model cap

The following code is a starting point for creating a basic NUOPC Model cap.

module MYMODEL

use ESMF
use NUOPC
use NUOPC_Model, &
modelSS => SetServices

! add use statements for your model’s initialization
! and run subroutines

implicit none
private

public :: SetServices

subroutine SetServices (model, rc)
type (ESMF_GridComp) :: model
integer, intent (out) :: rc

rc = ESMF_SUCCESS

11

! derive from NUOPC_Model

call NUOPC_CompDerive (model, modelSS,
if (ESMF_LogFoundError (rcToCheck=rc,
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! specialize model

call NUOPC_CompSpecialize (model,

specRoutine=Advertise, rc=rc)
(ESMF_LogFoundError (rcToCheck=rc,

line=__ LINE_ , &

file=_ FILE_)) &

return ! bail out

call NUOPC_CompSpecialize (model,

specRoutine=Realize, rc=rc)
(ESMF_LogFoundError (rcToCheck=rc,

line=__ LINE_ , &

file=_ FILE_)) &

return ! bail out

call NUOPC_CompSpecialize (model,

specRoutine=Advance, rc=rc)
(ESMF_LogFoundError (rcToCheck=rc,

line=__ LINE_ , &

file=_ FILE_)) &

return ! bail out

if

if

if

end subroutine

subroutine Advertise (model, rc)
type (ESMF_GridComp) model
integer, intent (out) rc
rc = ESMF_SUCCESS

! Eventually,
! export fields in this phase.

rc=rc)
msg=ESMF_LOGERR_PASSTHRU,

speclLabel=label_ Advertise, &

msg=ESMF_LOGERR_PASSTHRU,

msg=ESMF_LOGERR_PASSTHRU,

speclLabel=label_Advance, &

msg=ESMF_LOGERR_PASSTHRU,

you will advertise your model’s import and
For now,

however, call

! your model’s initialization routine(s).

! call my_model_init ()

subroutine

subroutine Realize (model, rc)
type (ESMF_GridComp) model
integer, intent (out) rc
rc = ESMF_SUCCESS
! Eventually,

! but leave empty for now.

12

you will realize your model’s fields here,

&

&

specLabel=label_RealizeProvided,

&

&

&

end subroutine

subroutine Advance (model, rc)
type (ESMF_GridComp) :: model
integer, intent (out) :: rc

! local variables
type (ESMF_Clock) :: clock
type (ESMF_State) :: lmportState, exportState

rc = ESMF_SUCCESS

! query the Component for its clock, importState and exportState

call NUOPC_ModelGet (model, modelClock=clock, importState=importState, &
exportState=exportState, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! HERE THE MODEL ADVANCES: currTime —-> currTime + timeStep

Because of the way that the internal Clock was set by default,

its timeStep is equal to the parent timeStep. As a consequence the
currTime + timeStep is equal to the stopTime of the internal Clock
for this call of the Advance() routine.

call ESMF_ClockPrint (clock, options="currTime", &
preString="--———- >Advancing MODEL from: ", rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file= FILE_)) &
return ! bail out

call ESMF_ClockPrint (clock, options="stopTime", &
preString="----—-——--—----r——— > to: ", rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

I Call your model’s timestep routine here

! call my_model_update ()

end subroutine

end module

13

4 An Example Cap

In this section we’ll look at code for an example NUOPC Model cap. The example shows the basic structure of a
NUOPC Model cap for a fictitious atmosphere model called ATM. It is slightly simpler than a “real” cap, but has
enough detail to show the basic coding structures. Each section of the example cap code will be broken down and
described separately.

Finding More NUOPC Code Examples

In addition to the example code in this section, the NUOPC Prototypes| repository contains many small example
applications that are helpful for understanding the architecture of NUOPC applications and showing example uses of
the NUOPC API. These example applications can be compiled and executed on your system.

A good starting point is the SingleModelProto application, which includes a single Model with a Driver and the
AtmOcnProto application| which includes two Models, a Connector, and a Driver.

4.1 Module Imports

The required NUOPC subroutines in the cap are grouped into a Fortran module, here called ATM. All NUOPC Model
caps will import the ESMF, NUOPC, and NUOPC_Model modules. Typically, other use statements will appear as
well to import subroutines and variables from your model code. The module exposes only a single public entry point
(subroutine) called Set Services. This should be true for all NUOPC Model caps.

module ATM

! Basic NUOPC Model cap for ATM component (a fictitious atmosphere model) .

use ESMF
use NUOPC
use NUOPC_Model, &
modelSS => SetServices

implicit none
private

public :: SetServices

4.2 SetServices

Every NUOPC Component must include a Set Services subroutine similar to the one shown below. All NUOPC
SetServices routines have the same parameter list and should do several things:

e indicate the generic component being specialized,

e register any specialization points.

14

https://github.com/esmf-org/nuopc-app-prototypes
https://github.com/esmf-org/nuopc-app-prototypes/tree/develop/SingleModelProto
https://github.com/esmf-org/nuopc-app-prototypes/tree/develop/AtmOcnProto

In the example code, the call to NUOPC_CompDerive () indicates that this component derives from (and specializes)
the generic NUOPC_Mode 1 component. In other words, this is a NUOPC_Mode 1 component customized for a specific
model.

The calls to NUOPC_CompSpecialize () register subroutines that are implemented in the cap. The specLabel
argument specifies NUOPC-defined specialization labels. NUOPC defines explicitly what happens during each phase
of the initialization and these labels uniquely define any specialization that might be supplied by the user. For exam-
ple, label_Advertise is responsible for advertising field in the import- and exportState of the component. The
NUOPC_CompSpecialize () also takes the specRoutine argument to indicate what routine provides the actual
specialization. This subroutine appears later on in the cap and the name of the registered subroutine is entirely up to
you.

The same specialization approach is used to specialize the generic Run method. Here 1abel_Advance is specialized
by subroutine Advance. The Advance specialization point is called by NUOPC whenever it needs your model to take
a single timestep forward. Basically, this means you’ll need to add a call inside the specialization subroutine to your
model’s timestepping subroutine.

subroutine SetServices (model, rc)
type (ESMF_GridComp) :: model
integer, intent (out) :: rc

rc = ESMF_SUCCESS

! the NUOPC model component will register the generic methods
call NUOPC_CompDerive (model, modelSS, rc=rc)
if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! specialize model

call NUOPC_CompSpecialize (model, specLabel=label_Advertise, &
specRoutine=Advertise, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

call NUOPC_CompSpecialize (model, specLabel=label_RealizeProvided, &
specRoutine=Realize, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

call NUOPC_CompSpecialize (model, specLabel=label_Advance, &
specRoutine=Advance, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

end subroutine

15

4.3 Checking Return Codes

Essentially all ESMF and NUOPC methods have an optional integer return code parameter. You are highly encouraged
to call ESMF_LogFoundError after every ESMF/NUOPC call in order to check the return code and record any
errors in the log files that ESMF generates during the run. Including the 1ine and file parameters will help to
located where errors occur in the code. These parameter values are typically filled in by the pre-processor.

4.4 Initialize Phase - Advertise Fields

In this section we see the implementation of the Advertise subroutine, which is registered for the
label Advertise specialization. The full list of specialization labels is described in the NUOPC Reference
Manual.

For now you should notice a few things:

o All specialization subroutines are standard ESMF attachable methods with the same parameter list:

— model - areference to the component itself (ESMF__GridComp)

— rc-an integer return code

o If the subroutine succeeds, it should return ESMF__SUCCESS in the return code. Otherwise it should return an
error code. The list of pre-defined ESMF error codes is provided in the ESMF Reference Manual.

The purpose of this phase is for your model to advertise its import and export fields. This means that your model
announces which model variables it is capable of exporting (e.g., an atmosphere might export air pressure at sea
level) and which model variables it requires (e.g., an atmosphere might require sea surface temperature as a boundary
condition). The reason there is an explicit advertise phase is because NUOPC dynamically matches fields among all
the models participating in a coupled simulation during runtime. So, we need to collect the list of possible input and
output fields from all the models during their initialization.

As shown in the code below, to advertise a field you call NUOPC_Advertise with the following parameters:

e cither the importState or exportState object
e the standard name of the field, based on the CF conventions

e an optional name for the field, which can be used to retrieve it later from its ESMF_State; if ommited the
standard name will be used as the field name

e areturn code

The example code below advertises one import field with the standard name "sea_surface_temperature",
and two export fields with standard names "air_pressure_at_sea_level" and
"surface_net_downward_shortwave_flux".

Advertising a Field does NOT allocate memory

Note that NUOPC does not allocate memory for fields during the advertise phase or when NUOPC_Advertise is
called. Instead, this is simply a way for models to communicate the standard names of fields. During a later phase,
only those fields that are connected (e.g., a field exported from one model that is imported by another) need to have
memory allocated. Also, since ESMF will accept pointers to pre-allocated memory, it is usually not necessary to
change how memory is allocated for your model’s variables.

16

http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node9.html#SECTION09030000000000000000
http://cfconventions.org/standard-names.html

subroutine Advertise (model, rc)
type (ESMF_GridComp) :: model
integer, intent (out) :: rc

! local variables
type (ESMF_State) :: importState, exportState

rc = ESMF_SUCCESS

! query for importState and exportState

call NUOPC_ModelGet (model, importState=importState, &
exportState=exportState, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! importable field: sea_surface_temperature

call NUOPC_Advertise (importState, &
StandardName="sea_surface_temperature", name="sst", &
TransferOfferGeomObject="will provide", rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! exportable field: air_pressure_at_sea_level

call NUOPC_Advertise (exportState, &
StandardName="air_pressure_at_sea_level", name="pmsl", &
TransferOfferGeomObject="will provide", rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! exportable field: surface_net_downward_shortwave_flux

call NUOPC_Advertise (exportState, &
StandardName="surface_net_downward_shortwave_flux", name="rsns", &
TransferOfferGeomObject="will provide", rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

end subroutine

4.5 Initialize Phase - Realize Fields

The following code fragment shows the Realize subroutine, which specializes label RealizeProvided.
During this phase, fields that were previously advertised should now be realized. Realizing a field means that an

ESMF_Field object is created and it is added to the appropriate ESMF__State, either import or export.

In order to create an ESMF_Field, you’ll first need to create one of the ESMF geometric types, ESMF_Grid,

17

ESMF_Mesh, or ESMF_LocStream. For 2D and 3D logically rectangular grids (such as a lat-lon grid), the typical
choice is ESMF_Grid. For unstructured grids, use an ESMF_Mesh.

Describing your model’s grid (physical discretization) in the ESMF representation is one of the most important parts
of creating a NUOPC cap. The ESMF geometric types are described in detail in the ESMF Reference Manual:

e ESMF_Grid - logically rectangular grids

e ESMF_Mesh - unstructured grids

e ESMF_LocStream - a set of observational points

For the sake a simplicity, a 10x100 Cartesian grid is created in the code below and assigned to the variable gridIn.

An ESMF_Field is created by by passing in the field name (should be the same as advertised), the grid, and the data
type of the field to ESMF_FieldCreate.

Fields are put into import or export States by calling NUOPC_Realize. The example code realizes three fields in
total, one import and two export, and all three share the same grid.

subroutine Realize (model, rc)
type (ESMF_GridComp) :: model
integer, intent (out) :: rc

! local variables

type (ESMF_State) :: importState, exportState
type (ESMF_Field) :: field

type (ESMF_Grid) :: gridIn

type (ESMF_Grid) :: gridout

rc = ESMF_SUCCESS

! query for importState and exportState

call NUOPC_ModelGet (model, importState=importState, &
exportState=exportState, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! create a Grid object for Fields

gridIn = ESMF_GridCreateNoPeriDimUfrm (maxIndex=(/10, 100/), &
minCornerCoord=(/10._ESMF_KIND_R8, 20._ESMF_KIND_RS8/), &
maxCornerCoord=(/100._ESMF_KIND_R8, 200._ESMF_KIND_R8/), &
coordSys=ESMF_COORDSYS_CART, staggerLocList=(/ESMF_STAGGERLOC_CENTER/), &
rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &

file=_ FILE_)) &
return ! bail out
gridOout = gridIn ! for now out same as in

! importable field: sea_surface_temperature

field = ESMF_FieldCreate (name="sst", grid=gridIn, &
typekind=ESMF_TYPEKIND_R8, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

18

http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node5.html#SECTION05080000000000000000
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node5.html#SECTION050100000000000000000
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node5.html#SECTION05090000000000000000

line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out
call NUOPC_Realize (importState, field=field, rc=rc)
if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! exportable field: air_pressure_at_sea_level

field = ESMF_FieldCreate (name="pmsl", grid=gridOut, &
typekind=ESMF_TYPEKIND_R8, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

call NUOPC_Realize (exportState, field=field, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

! exportable field: surface_net_downward_shortwave_flux

field = ESMF_FieldCreate (name="rsns", grid=gridOut, &
typekind=ESMF_TYPEKIND_R8, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

call NUOPC_Realize (exportState, field=field, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

end subroutine

4.6 Model Advance Specialization

As described in the section[£.2] the subroutine Advance (shown below) has been registered to the specialization point
with the label model_label_ Advance inthe SetServices subroutine. This specialization point subroutine is
called within the generic NUOPC_Model run phase in order to request that your model take a timestep forward. The
code to do this is model dependent, so it does not appear in the subroutine below.

Each NUOPC component maintains its own clock (an ESMF_C1lock object). The clock is used here to indicate the
current model time and the timestep size. When the subroutine finishes, your model should be moved ahead in time
from the current time by one timestep. NUOPC will automatically advance the clock for you, so there is no explicit
call to do that here.

Since there is no actual model for us to advance in this example, the code below simply prints the current time and
stop time (current time + timestep) to standard out.

With respect to specialization point subroutines in general, note that:

e All specialization point subroutines rely on the ESMF attachable methods capability, and therefore all share the

19

same parameter list:

— apointer to the component (ESMF__GridComp)

— an integer return code

e Because the import/export states and the clock do not come in through the parameter list, they must be accessed
via a call to NUOPC_ModelGet as shown in the code below.

subroutine Advance (model, rc)
type (ESMF_GridComp) :: model
integer, intent (out) :: rc

! local variables
type (ESMF_Clock) :: clock
type (ESMF_State) :: importState, exportState

rc = ESMF_SUCCESS

! query the Component for its clock, importState and exportState

call NUOPC_ModelGet (model, modelClock=clock, importState=importState, &
exportState=exportState, rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=__ FILE_)) &
return ! bail out

! HERE THE MODEL ADVANCES: currTime -> currTime + timeStep

Because of the way that the internal Clock was set by default,

its timeStep is equal to the parent timeStep. As a consequence the
currTime + timeStep 1is equal to the stopTime of the internal Clock
for this call of the Advance () routine.

call ESMF_ClockPrint (clock, options="currTime", &
preString="--———- >Advancing ATM from: ", rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

call ESMF_ClockPrint (clock, options="stopTime", &
preString="--————--------r > to: ", rc=rc)

if (ESMF_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &
line=__ LINE_ , &
file=_ FILE_)) &
return ! bail out

end subroutine

end module

20

	Overview
	Document Roadmap
	Additional NUOPC Resources

	The Big Idea
	Specializing Generic Components
	NUOPC Model Cap
	How Much of My Code Do I Need to Change?
	How Do I Know it Works?

	Writing and Testing a NUOPC Cap for your Model
	Install ESMF and NUOPC on the Target Machine
	Prepare Your Model Code
	Choose a Configuration of Your Model for Development
	Integrate a Cap Template into Your Codebase
	Modify Your Build to Generate a NUOPC Makefile Fragment
	Initialize Your Model from the Cap
	Call Your Model's Run Subroutine from the Cap
	Run the Cap with a NUOPC Driver
	Split Up the Initialization Phases
	Test and Validate Your Cap
	Example NUOPC Model cap

	An Example Cap
	Module Imports
	SetServices
	Checking Return Codes
	Initialize Phase - Advertise Fields
	Initialize Phase - Realize Fields
	Model Advance Specialization

